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Abstract—Edge computing is one of the key features of the 5G
technology-scape that is realizing new and enhanced automotive
use cases for improving road safety and emergency response
management. Back Situation Awareness (BSA) is such a use case
that provides advance notification to the vehicles of an arriving
emergency vehicle (EmV). This paper presents an algorithm for
enhancing the accuracy of the advance Estimated Time of Arrival
(ETA) notification of an approaching emergency vehicle EmV
towards vehicles, ensuring timely reaction by the vehicles to
create a clear corridor for the EmV to pass through unhindered,
thereby saving precious time to reach the emergency event
in a safe manner. Features of the presented solution are: I.
the algorithm self-correction approach, II. adaptive or dynamic
dissemination area size allocation in reaction to traffic changes,
and III. evaluation of the ETA accuracy. Based on real travel time
data measurements, the performance of the algorithm has been
evaluated and compared using Kalman filter, Filter-less method,
Moving Average, and Exponential Moving Average filters. It is
observed that the Kalman filter provides better accuracy on the
ETA estimation, by reducing the estimation error by around 14%
on average.

Index Terms—5G, C-ITS, C-V2X, ETA, MEC.

I. INTRODUCTION

The latest advances in 5G technology enablers are leveraged
by vehicular networks in ways not perceivable before. These
advances are expected to improve public safety in terms of
avoidance of traffic accidents and improvement of emergency
response time, considered as a lifesaving factor.

There is a significant research conducted to find a mean-
ingful relationship between the emergency response time and
the probability of fatal outcomes, and the results prove that
reduction of the overall response time plays a critical role
in emergency situations [1–4]. For example, in [2] a 10
min reduction in the emergency response time decreases the
probability of death by one-third. The regulatory requirements
of some developed countries call for less than 10 minutes
reaction time to life-threatening incidents, which becomes
difficult to achieve especially during heavy traffic conditions.

Today the drivers get informed of the presence of an
approaching Emergency Vehicle (EmV), which can be an
ambulance, a police vehicle, or a fire brigade, through blaring
sirens and flashing lights. Since the drivers get alerted only
when the EmVs are within audio/visual range, they have
limited time and space to react and manoeuvre away from
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the path of the EmV in a timely, calm, coordinated, and safe
manner. Creating a clear corridor for the EmV becomes more
difficult and time consuming when there is high traffic density.
This situation not only causes delays in emergency services
response time but can also cause accidents. According to a
report published by National Highway Traffic Safety Adminis-
tration (NHTSA) office of Emergency Medical System (EMS),
70% of all ambulance crashes occur while operating in an
emergency mode [5]. According to another report, [6], 66%
of firetruck crashes occur when the truck is being used during
an emergency.

To address these challenges a lot of research work has been
done on modelling and optimizing the ambulance response
time. As will be described in the Section II, most of the
solutions propose methods calling for route optimization that
enables the circumvention or avoidance of congested locations
in order to ensure the timely arrival of the EmV to the intended
destination. However, such solutions are limited depending on
the countries considered, time of the day/year, weather, traffic
conditions and limited route options.

Given the above stated limitations we present a more
universal V2X method that leverages the multi-access edge
computing (MEC) system, which is an integral part of 5G
mobile network infrastructure [7], together with the Network
Function Virtualization (NFV), and Software Defined Net-
working (SDN) as key technology enablers [8]. The reason
for proposing a vehicle-to-network (V2N) solution is because
the vehicle-to-vehicle (V2V) communication range is limited,
for example up to 300 meters for PC5 links, for providing
enough time for the drivers to calmly inter-coordinate between
themselves and/or free the lane to create a safety corridor
for the fast approaching EmV. Our proposed Back-Situation
Awareness (BSA) method enables an early notification of the
ETA of an approaching EmV while it is out of the audio visual
range of the vehicles along its route-path. As seen in Fig. 1, the
BSA service is instantiated within the MEC system predicting
the ETA values with reference to different way-points along
the selected route-path of the EmV. These values known as
ETA-1, ETA-2, ETA-3, and ETA-4 are disseminated to the
vehicles in the dissemination areas between two consecutive
way-points referenced as WP-1, WP-2, WP-3, and WP-4,
respectively Dissemination Area 1, Dissemination Area 2,
Dissemination Area 3, and Dissemination Area 4.

This work extends our previous work [9] where a basic
version of the BSA algorithm was implemented using Kalman
filter [10] and analysed on fixed dissemination areas. The
analysis showed that the accuracy of the ETA value prediction
is intrinsically linked to the dissemination area size and
the traffic density in each dissemination area. The challenge
therefore was to develop a BSA algorithm that is able to self-
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Fig. 1: Back Situation Awareness Overview.

correct dynamically itself taking into consideration the error-
size and the traffic density to predict accurate ETA values.

For this purpose the scope of research has been expanded
beyond [9], thereby the extended new algorithm solution takes
into account prevailing traffic conditions and estimation errors
when determining the optimum size of the dissemination areas
that will give an accurate prediction of the ETA. So, the
algorithm is able to dynamically resize the dissemination areas
size in order to enhance the prediction accuracy. Moreover, we
perform a comparative analysis of different filtering methods
to determine which one would give an accurate ETA values
prediction. We also observe and discuss the impact of the
frequency of the input data from the EmV on the prediction
accuracy when deriving ETA values.

For our analysis, we compare our results with the experi-
mental data measurements reflecting the actual time of arrival
(ATA) that is measured and obtained on the Smart Highway
testbed1 placed on the E313 highway in Antwerp, Belgium.

The rest of the paper is organized as follows. Section II
provides Related work, followed by Section III presenting
the use case of the BSA scenario and providing a system’s
perspective. Section IV gives details about the dynamic self-
correcting algorithm for accurate ETA prediction and related
concepts together with the filtering techniques. The analysis
and performance evaluation of the ETA algorithm within the
BSA application in terms of accurate calculation and dynamic
dissemination of the ETA is provided in Section V, followed
by Section VI concluding the paper.

II. RELATED WORK

Along with the growing needs for transportation, the ever-
increasing number of vehicles causes numerous issues on the

1Smart Highway: https://www.fed4fire.eu/testbeds/smart-highway/

TABLE I: Overview of related work.

Research direction Works

non-V2X concepts
evaluation of the EMS
performance [12–15]

prediction of the EmV’s
travel time [10,16–18]

V2X concepts
V2V [19–27]
V2I [28]
V2N [29]

roads and highways such as traffic jams, car crashes, fatali-
ties, etc. Thus, most of the research efforts on the situation
awareness in vehicular scenarios tend to analyse methods that
support the Emergency Management Systems to reduce patient
mortality, to prevent disability, and to improve chances of
recovery [11]. One of the key factors towards achieving these
objectives is the emergency response time, which is considered
as crucial for saving people’s life. Thus, the relationship
between the emergency response time and the survival rate
has been part of different research works and some of them
are presented in Table I and discussed as follows.

According to Nicholl et al. [12] a 10-km increase in straight-
line distance is associated with around a 1% absolute increase
in mortality, while Pell et al. [13] concluded that reducing
ambulance response times to 5 minutes could almost double
the survival rate for cardiac arrests not witnessed by ambulance
crews.

Different predictive models, filters, routing, and navigation
systems are used together with large historical datasets col-
lected on different cities to optimize the route which the EmV
should follow to avoid traffic, to have an accurate time of
arrival estimation for the body expecting at the emergency
units, and to have an efficient way of utilizing emergency
services and resources. The proposed solutions depended on
the countries considered and also on the time of the day, year,
weather, and traffic condition.
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Iannoni et al. [14] provide an extension of the hyper-
cube model, combined with the hybrid genetic algorithms, to
optimize the configuration and operation of the emergency
response time. The study provided by Iannoni et al. [14]
suggests the relocation of the ambulance bases and their area
of work, as a way to reduce i) the average user response
time, ii) imbalance of the ambulances’ workloads, and iii)
the fraction of calls not serviced within a predetermined
threshold. Poulton et al. [15] represents application of a data-
driven methodology for route selection and the estimation of
arrival times of ambulances travelling with blue lights and
sirens on. This methodology recognizes only historical data
collected internally by the emergency ambulance services,
thereby not considering any real-time information, traffic, or
related context information retrieved from the external systems
(e.g., traffic management systems, cellular network services,
etc.).

Regarding technology despite the disadvantage of the short-
range emergency notifications, most of the research effort in
enhancing situation awareness on the roads is focused on
the Vehicle-to-Vehicle (V2V) technology, as it can be seen
in the Table I. Among these works, an extensive effort has
been conducted so far to reduce the delay of operation for
emergency responders [19,20,28]. In their survey on urban
traffic management system using wireless sensor networks
[19], Nellore and Hancke recognize the schemes for prioritiz-
ing EmVs, as well as the congestion avoidance by decreasing
the average waiting time for vehicles at the intersection, as
a foundation for the future research. Tackling the intersection
assistance systems, Joerer et al. [21] show that the current
state-of-the-art congestion control mechanisms are not able to
support intersection assistance adequately, due to the lack of
fine-grained prioritization among vehicles. Since these existing
congestion control mechanisms provide an equal share of
communication opportunities to all vehicles, not considering
the difference of road traffic situations or individual vehicles
such as an EmV, the exchange of the traffic information
cannot be done in a timely manner. Therefore, Joerer et
al. [21] propose an improvement, which allows vehicles in
critical situations at intersections to be temporarily exempted
from congestion control, enabling them to communicate with
possible collision candidates more frequently, through the so-
called beaconing solutions that rely on one-hop broadcasting
and 802.11p technology [21].

One of the interesting features on broadcasting awareness
messages is the dissemination of Time of Arrival (ToA) of
emergency vehicles. This way, the surrounding civilian cars
can anticipate at which moment they should clear the lane.
Senart et al. [23] study a reliable mechanism for transmitting
information about EmV’s ToA, using a wireless medium,
and a feedback system. In their work [23], Senart et al.
proposed a method to disseminate information on EmV’s
arrival and to provide real-time feedback to EmV in case
the quality of the communication is degraded. In this kind of
scenario, the EmV will be informed that certain vehicles may
not have been warned, thus receiving a recommendation to
slow down. Another approaches for disseminating information
about EmV are presented by Kapileswar et al. [24], Johnson
[25], Metzner and Wickramarathne [27], and Hadiwardoyo
et al. [26], where they study relying on V2V connection to
disseminate information on the location and the route path of

emergency vehicles in real time, in order to provide vehicles
in a closer proximity with an ample time to make driving
decisions by considering incoming alerts.

Nevertheless, as already mentioned a drawback of the V2V
communication is its short range, which is not sufficient for the
drivers to timely react and clear the lane for the approaching
EmV. Thus, an attempt to utilize V2I communication for
that purpose is presented by Moroi and Takami [28]. To
significantly decrease travel time for EmVs, Moroi and Takami
[28] proposed utilizing the Roadside Units (RSUs) that support
EmVs by notifying other vehicles about the EmV’s route.

The network infrastructure and vehicle need to react with
the latency below 100ms [29] to achieve higher safety levels
by being less dependent on the driver’s actions. This of
course requires service availability in the edges close to the
vehicles. Due to a still limited range that they cover, most
of the operational requirements for vehicular applications
cannot be fulfilled by RSUs [30]. On the other hand, cellular
technologies successfully cope with this challenge since base
stations usually cover larger regions than short range gateways
(e.g., RSUs) [31]. Therefore, 5G systems and Multi-Access
Edge Computing (MEC) are expected to improve the current
support for V2X use cases [30,32], with the opportunity to
significantly extend the notification range, and to decrease
the delay by deploying vehicular applications at the network
edge. By utilizing the cellular infrastructure, the management
and orchestration entities, network controllers, and application
services, are all fed with global information that helps them to
notify civilian vehicles about emergency situations in extended
regions, unlike in the case of short range communications
where the local information in each vehicle does not include
a broad view of the overall network.

It is in view of the above observations and shortcomings that
we propose the BSA service the details of which are described
in the subsequent sections.

III. BACK SITUATION AWARENESS (BSA) SOLUTION

A. BSA Use Case

As indicated above, the main objective of the BSA service is
to improve the emergency response time, which is achieved by
the early notification/dissemination of the EmV’s ETA to the
vehicles, allowing them enough time to create a clear corridor
for the EmV to pass through unhindered.

There are different definitions of the emergency response
time. A general overview found in many standards defines the
emergency response time as the overall time being comprised
of four unique time intervals, which include the activation,
response or preparation, on scene, and transport intervals
[33,34].

As shown in Fig. 2 when the Emergency center is notified
about an emergency event we consider this as the activation
time. Then the time which is required to have EmV dispatched
to the emergency case is known as the preparation time. The
time spend on the way to reach the destination is the travel
time. The time spent on the event is the on-scene interval,
and finally, the time spent from ambulance departure to the
hospital is the travel time. In each emergency response time
interval the developed BSA application within the MEC has
its role, and uses its components and operations to initiate
the algorithm, to calculate the ETA, to disseminate it on the
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Fig. 2: Emergency response process with respective operations.

upcoming route-path, and at the end to terminate the use of
the ETA algorithm (see Fig. 2).

A high-level overview of the BSA use case is illustrated in
Fig. 1, which shows an EmV on route towards the event loca-
tion. The event information is first received by an Emergency
Management Entity (EME), such as 112 or 911 Headquarter
(HQ), which dispatches an EmV providing it with the event
location addresses (referred to as destination address), the
route-path to follow, and the IP address of the BSA service.
While heading towards the destination it will periodically start
sending the ETSI Cooperative Intelligent Transport System
(C-ITS) Cooperative Awareness Message (CAM) notifications
[35] via the mobile network infrastructure towards the BSA
service instance, which is instantiated on a MEC system as a
MEC application [36].

The BSA service is able to parse the information encoded
in the received CAM notifications such as speed, location,
direction of the EmV. Based on these parameters, the BSA
service application derives the value of ETA from the EmV’s
current location with reference to the respective way-points
(Way-Points (WPs)) specified by the BSA service application
along the designated route-path of the EmV up until the EmV’s
destination. Note that the destination of the EmV corresponds
to either the event location and/or the final destination such
as a hospital in case the EmV is an ambulance. BSA service
application calculates ETA values ETA-1, ETA-2, ETA-3, and
ETA-4 with reference to WP-1, WP-2, WP-3, and WP-4
respectively. The derived ETA values are then encoded in the
ETSI ITS Decentralized Environmental Notification Message
(Decentralized Environment Notification Message (DENM))
[37], which is then geo-casted in the respective dissemination
areas. It should be noted that the dissemination area is the
area between two successive WPs, and its size depends on the
input parameters. Thus the ETA-1, ETA-2, ETA-3, and ETA-4
will be broadcasted in Dissemination Area 1, Dissemination
Area 2, Dissemination Area 3, and Dissemination Area 4
respectively (see Fig. 1) . All the vehicles that are on the route-
path of the EmV will process the received DENM notifications
to extract the ETA values to be displayed on the vehicle’s
control panel. This will give the drivers an estimate of when
to expect the EmV to arrive and thus manoeuvre to create a
clear corridor for the EmV to pass through un-hindered in a
safe manner.

B. BSA Service Application Design

Fig. 1 gives the design overview of the BSA service
application, which is envisaged to run as a Virtual Application
Function (VAF) deployed and instantiated on the MEC system.
Fig. 3 shows the functional elements that are chained to deliver
the BSA service. Fig. 3 also depicts the required interfaces
enabling the BSA application to connect with the external en-
tities. Interfaces A, B, and C are designed in a respective order
to: i) receive upstream CAMs originating from the EmV with a
specified frequency in Hz, ii) dispatch a DENM containing the
derived ETA value for a specific dissemination area, and iii)
maintain connectivity with a peering BSA application instance
that may be running in another edge domain belonging to a
different operator.

The EmV, after receiving the IP address of the MEC host
where the BSA service is instantiated from the EME, will
start to transmit the CAMs periodically towards the BSA
service on the MEC host. These messages will be received
on interface A, to be processed by the ITS protocol stack. In
our case, this stack is provided by Vanetza, an open-source
implementation of the ETSI C-ITS protocol suite [38]. The
receive function of the Vanetza protocol suite will extract the
CAM notification from the received IP packet. The decoding
function, which is a simple helper function supporting Vanetza,
will parse, extract and filter the information relevant for the
BSA algorithm from the CAM notification, and prepare an
input data for the BSA algorithm. The input parameters to
the BSA are: i) the identification of EmV (EmV ID), ii) the
speed of the EmV, iii) the current location of the EmV, iv) its
destination, and v) direction of the EmV.

The BSA algorithm, marked in red in Fig. 3, is at the heart
of the BSA service and the main contribution of this paper. It
will calculate the ETA values for the respective dissemination
area(s) each time it receives the CAM notification and evaluate
the estimation error, based on which it will take corrective
actions for error minimization by readjusting the size of the
dissemination areas. The details of the BSA algorithm are
presented in Section IV while its performance analysis can
be found in the Section V-B.

Along with the ETA calculation operations, the BSA algo-
rithm is storing the state of the application that refers to the
information on the vehicle’s speed, location, and destination,
in the state database (State DB in Fig. 4). The state database
plays a significant role in the communication between two
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Fig. 3: BSA operation overview.

peering BSA service application instances running in two
edge domains, thereby allowing the sharing of the EmV-
specific meta information from one edge domain to the other
via interface C (Fig. 3). This not only extends the range
of the BSA service, but is also done in case the mobile
network infrastructure along the route-path may belong to
more than one operator with different MEC systems. However,
the coverage of multi-operator domains is out of the scope of
this paper.

Furthermore, the output of the BSA algorithm, i.e., mainly
the ETA values for respective dissemination areas, is being
processed by another helper function of the ITS protocol stack,
referred to as Encoding Function in Fig. 3. This function
has the task to prepare ETA notifications for the different
dissemination areas by passing the information on: i) EmV
ID, ii) calculated ETA value, and iii) dissemination area, to
the transmit function of the Vanetza ITS protocol stack. The
ITS protocol stack will encode this information in the ETSI
ITS DENM a notification message, and dispatch it towards the
mobile network infrastructure via interface B. This DENM
notification is then disseminated (e.g., via broadcast) in the
respective Dissemination Areas.

Each of the functional components comprising the BSA
service is implemented as a visualized MEC service or MEC
application, and thus instantiated on a MEC system. Fig. 4
gives the overview of the BSA service in the context of the
standard ETSI MEC system architecture [36], and functional
scope of each component is summarized below:

1) BSA Application: - This is proposed to be deployed
as a MEC application [36] where the logic of assigning
WPs on the route-path and computing ETA values with
reference to these WPs is located. Additionally, this can
also deduce maneuver recommendations to the vehicles
being notified. This corresponds to the BSA Algorithm
functional entity in Fig. 4.

2) C-ITS Protocol Service: This is proposed to be a
MEC service [36] for decoding/parsing received C-ITS

awareness and notification messages (CAM/DENM) for
information relevant to the BSA application instance and
for encoding ETA values in the DENM for notifying the
vehicles. This corresponds to the ITS protocol stack and
the decoding/encoding helper function entities in Fig. 4.

3) Map Service: This is proposed to be a MEC ser-
vice that can be consumed by the BSA application
for getting geospatial information, such as route-path
information/plan based on which it can specify WPs
along the route-path, and also get more information on
the type of road the EmV is traveling on.

4) State DB: This is proposed to be the database where the
meta-data/state-information of the EmV decoded/parsed
by the C-ITS protocol service from the periodically
received CAMs/DENMs are stored, which are then
consumed by the BSA application for calculating ETA
values, and optionally maneuver recommendations. This
corresponds to the State DB entity in Fig. 4.

5) Dissemination Service: This service is used to dissemi-
nate the EmV’s ETA information to the vehicles in front
of the EmV. The distribuation of the ETA values in done
within the relevant dissemination areas. As explained
above a dissemination area is known as a region be-
tween two successive WPs.The BSA application encodes
the ETA vector in a Cooperative Intelligent Transport
System (C-ITS) DENM [37], and broadcasts it in a geo-
casted dissemination area. The respective ETA value will
be displayed on the control panel if the vehicles which
in front of the EmV while heading to the emergency
case.

The other functional elements shown in Fig. 4 are specified
in the ETSI GS MEC 003 v2.1.1 standard [36] and are used for
the management and orchestration of the BSA related MEC
applications and MEC services as defined above. It should be
noted that the EME is able to access the BSA system via the
Customer Facing Service (CFS) interface. The details of the
design of the BSA service components along with the details
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Fig. 4: BSA Service in the context of MEC system.

of the service orchestration and life-cycle management has
already been described in our previous work [9].

IV. ESTIMATED TIME OF ARRIVAL ALGORITHM

A. ETA algorithm workflow
As described above, the BSA Algorithm takes as inputs

the location, speed, ID, and destination (i.e., the location
of emergency event) of the EmV for the calculation of the
Estimated Time of Arrival (ETA) values with reference to the
multiple WPs along the EmV’s route path (see Fig. 3).

The workflow of the algorithm is shown in Algorithm 1.
The MEC system will continuously listen to potential input
information. In the case of the first received CAM it will
be decoded and delivered to the BSA application. Then the
system will collect and analyze the input data. The first step
is to define the current geo-location of the reference object
which in our case is an emergency vehicle. Then, the algorithm
checks the required destination and uses Map Service to
determine the route-path that EmV should follow headed to
this destination. Considering the route path defined by the way-
points, the algorithm will derive the ETAs for all dissemination
areas, and create an ETA vector that will be broadcasted to
the vehicles in front of the EmV using DENM and 5G mobile
network infrastructure.

Depending on the frequency of input CAMs, which can be
1Hz, 2Hz, or 10Hz, the algorithm will have the input informa-
tion again. With the upcoming CAM notification, the algorithm
will have to check the position of the EmV and the time stamp
at which this position was recorded. We consider this value
as the Actual Time of Arrival (ATA), and is further used to
check the accuracy of the previously recorded and transmitted
ETA. This error value which displays the difference between
ATA and ETA is considered as performance indicator and is
used as feedback correction index for the following calculation
of the ETA. Then depending on the ATA value and actual
speed of the EmV, the algorithm determines the size of the
dissemination areas and the number of reference WPs. The so
called estimation error can result in a different sign. It will be
positive if the ATA > ETA and vice versa.

This algorithm will continue this trend until the EmV arrives
at the destination. On such case the application terminates.

Algorithm 1: Workflow of the traffic signal for the
main algorithm.
Result: Estimated Time of Arrival (ETA)
Start;
ε = 0sec ; step 1; while EMV Not arrived at

Destination do
Listen to arrival of CAM Notification;
Get current geo-location of EmV;
if EmV moved from previous position then

Determine the Actual time of Arrival (ATA);
ETA−ATA = ζ;
if ζ 6= ε then

Go to step x;
else

Re-evaluate the number and size of
dissemination areas and ETA values per
dissemination areas; ETAP = ATA;

Derive/Adjust coordinates for each
dissemination area;

Go to step 1;
end

else
Derive the ETA for all dissemination areas, and
Create an ETA Vector;

Disseminate the ETA Vector in each sector
towards dissemination areas;

if (EmV arrived) then
Clear/Delete the previous dissemination
area; Stop;

end
end

end

The reference scenario shown in Fig. 1 and Fig. 3 is
modeled as a graph that consists of route nodes and WPs.
The sequence of the WPs (i.e., WP1, WP2,...WPi) defines the
size, and the edges of the dissemination areas, and it represents
the route-path that the EmV should follow.

Estimating the time of arrival for different dissemination
areas is based on the EmV’s current location with reference
to each WP (i.e., WPi), and it is denoted as ETAi. The sum
of all travel times of consecutive WPs is considered to be the
total time of travel.

According to Min et al. [18], the time of arrival (i.e., ETAi)
for each dissemination area follows a probability density
function Fi(t) with a mean value µ(ti) and a variance σ(ti)2,
and depicted in equations (1) and (2) respectively.

µ(ti) =

∫ tN

t1

tFi(t)dt (1)

(
σ(ti)

)2
=

∫ tN

t1

t2Fi(t)dt−

(∫ tN

t1

t2Fi(t)dt

)2

(2)

The time t1 in equation (2) represents the starting time of
the trip, while tN denotes the time of reaching the destination.
As expressed in equation (2), the variance of the time of arrival
for a specific segment of the dissemination area is not constant.
In fact, it is dependent on various factors, such as delay,
changes of the speed, stops, weather, and any prevalent traffic
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conditions. The information about the variance calculated in
equation (2) is used by the present systems to select the
shortest path to the destination by minimizing the mean and
the variance of ETAi [18], but our proposed system overcome
this. As indicated above, our proposed BSA service ensures
in-advance notification of the EmV arrival time, therefore it is
expected from the vehicles in front to free the requited lane
for the EmV. In this new situation, the proposed system can
always select the shortest path excluding traffic conditions,
time of day/year, or other impact factors.

As denoted in equation (3) (see [18]), the ETA (ti+1) is
calculated with reference from EmV’s current position to a
specific WP (WPi+1), and thus depends on the ETA (ti)
for the previous WP, (WPi), the average speed of the EmV
(svi,vi+1

(ti)), as well as the distance between two successive
WPs (Li,i+1).

ti+1 = ti +
Li,i+1

svi,vi+1(ti)
. (3)

The distance is a constant parameter and depends on the
route-path that the EmV selects to reach the destination. It is
calculated using the WPs obtained from the MEC Map service
(see Fig. 3) along the selected route-path. Following this fact,
we assume that the variance of the ETA depends only on the
average speed of the EmV.

The average speed of the EmV, i.e., svi,vi+1(ti), refers to the
value of speed maintained between two successive WPs, i.e.,
WPi+1 and WPi, and it is obtained considering the historical
data of previous traveling experiences on the same route-path.
For obtaining the historical data on speed, we relied on a
dataset collected from field measurements as explained in the
next section. In our previous work [9] we used historical data
to have the actual speed of the EmV derived from the period-
ically received CAMs for ETA estimation using the Kalman
filter. In this work, we added more experimental measurements
and analysed three additional approaches namely i) Filter-less
method, ii) Simple Moving Average Filter, and iii) Exponential
Moving Average Filter. The key objective of assessing the
different filtering methods is to analyze them for accuracy
and their feasibility in terms of the algorithm complexity. For
realistic assessment of the reference algorithms, we utilize the
dataset that is collected from the field measurements of the
vehicle driving on the Smart Highway testbed that is installed
on the E313 highway in Antwerp, Belgium [39]. More details
on the testbed is provided in Section V.

In this work, we assume that changes in speed that are
reflected in the datasets are caused by weather conditions,
traffic congestion, and ridership. Hence, all of these impact
factors are used. The speed parameter is obtained by the GNSS
device that reports position, speed, and time when this sample
data is recorded. The speed parameter values are updated while
the vehicle is driving on the study path with the transmission
frequency of 1 Hz. According to our analyses we consider
this value as high enough to enable our methods to derive
outputs within acceptable bounds of ETA estimation error.
Further details on error bounds are provided in Section V-B

B. Overview of the reference methods
To compare and assess the resulting ETA accuracy, four

different forecasting methods are used.

1) Filter-less method: When using filter-less method, a
single EmV speed value (v[n]) obtained from a single CAM
notification received (without taking into consideration the
previous speed data), is considered to have the ETA.

In such case the ETA in the equation 3, respectively the
average speed svi,vi+1(ti), via a discretized method will be

s[n] = v[n]. (4)

In such instances, anytime the BSA application receives a
CAM notification, it will consider the EmV reported speed
vi(ti) (or v[n]) and will calculate the ETA value for the
upcoming way-points on the highway while the EmV is
reaching the emergency case.

2) Simple Moving Average Filter: Simple Moving Average,
as the name indicates is an average that moves. The average is
created using older data in combination with the new available
data, causing this parameter to move along the time scale.

When using this method, the speed parameter s[n] is formed
by computing the average speed of the EmV over a specific
period, which we define as windows size. In our case we have
considered a window size (N) equal to 5, which means that
the average speed svi,vi+1

(ti) in equation 3 is based on the
last five speed values reported by the EmV.

s[n] =
1

N

N−1∑
i=0

v[n− i]. (5)

As shown on the equation 5 the average speed using the
Simple Moving Average filter is derived from the sum of the
values divided by the number of values.

3) Exponential Moving Average Filter: Exponential Mov-
ing Average Filter, same as the Simple Moving Average
follows the moving average logic too. However, in this case
the resulted average speed depends on the previous average
and the current speed value. The filter is called ’exponential’,
because it uses an exponentially smoothing factor α to include
the weight of previous inputs speed values, equation 6.

s[n] = α

N∑
i=0

(1− α)iv[n− i]. (6)

4) Kalman filter: As reflected in the literature
[10,16,40,41], the Kalman filter has been used extensively in
numerous areas with practical applications. In particular, it is
usually applied to model the systems that are characteristic
for multiple inputs and output parameters, considering both
stationary and non-stationary situations [16]. This filter
consists of the initialization, prediction, and correction steps,
for every input value, and it uses linear stochastic difference
equations to estimate values of interest [42]. As shown in
the equation (7), xk is the state variable, which is in our
simulation case the ETA. Then, A is the state transition
constant, which relates the present state xk of the ETA to its
previous state xk−1. Since ETA is a one-dimensional value,
A is equal to 1.

xk = Axk−1 +Buk−1. (7)

Furthermore, the parameter B associates the control input u
parameter to the ETA value. Since the ETA value is one-
dimensional, the same rule applies to B, and it is equal
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to 1. The control input u is a vector and it is modeled
using the aforementioned real data measurements. Thus, it
is included in the recorded average speed for the considered
dissemination areas. In order to include the impact of different
traffic changes, we consider the process noise covariance Q,
thereby obtaining the covariance matrix Pk.

P k = AP k−1A
T +Q. (8)

For the correction step, we consider the real data measure-
ments and follow the equations (9)-(11). In our case study,
the measured historical average speed values are used to
have the vector of the ETA measurement values expressed
as zk. H is the transformation matrix, in our case is 1, and
xk is obtained using the above mentioned mapping system.
Obtained measurements include noise or uncertainty, whose
variance is R. The Kalman gain K, expressed in equation (9),
determines to what extent the predictions should be corrected
in time step k. This estimation/prediction error is the difference
between the predicted value and the actual measurement.
Depending on the value of variance measurement noise R,
this gain gives weight to the predicted or the measured value.
A large value of R results in the small K, which means that
the predicted value does not reflect the measured one. On the
contrary, if R is small, it means that the measurements for
the specific area are approximated with an insignificant error
value.

Kk = PkH
T (HP kH

T +R)−1. (9)

xk = xk +K(zk −Hxk). (10)

Pk = (I −KkH)P k. (11)

To get the input value of R, we have obtained the difference
between time intervals or time of arrival recorded by the
Global Navigation Satellite System (GNSS) receiver while
driving in the highway, and the time of arrival calculated
using the mapping system and recorded speed by the device.
The error values vary between minimum 0.00 s to 0.46 s as
maximum, with the mean value of 0.00 s, a standard deviation
of 0.20 s, and a variance 0.041 s. This result is used on the
simulation of the ETA calculation.

C. Dissemination area size determination
As described above, the BSA service determines the EmV’s

ETAs with reference to different WPs along the route-path,
and then disseminates the calculated ETA values in respective
dissemination-areas. A dissemination-area is defined as a
region between two successive WPs, and the ETA is derived
with reference to the WP marking the beginning of each
dissemination area. Thus, all vehicles within the respective
dissemination area will receive the same ETA value. As a
results, despite the prediction error which is an outcome of
the above mentioned forecasting techniques, the ETA value
within a dissemination area (i) will have another estimation
error (e(ti)) which will depend on the size (i.e., road-length)
of the dissemination area (Li).

In our previous work [9] we gave an empirical evidence of
the effect of dissemination area size expressed by L on the

Fig. 5: Variation of the estimation error for Scenario 1 (L=250 m),
Scenario 2 (L=500 m) and Scenario 3 (L=1000 m) [9].

estimation error (ei), which is shown in Fig. 5 using reference
dissemination area size of 250m, 500m and 1000m. From this
figure [9], it is observed that the lowest of the maximum
estimation error of 62.22s is for L=250m as compared to
92.10s observed for L=500m, with the highest maximum
estimation error of 118.08s observed for L=1000m. Comparing
the average values, we have 25s for L=250m, 23.32s for
L=500m, and 31.42s for L=1000m being the largest average
estimation error [9].

As we can see the higher dissemination area size produces
larger error. The error behaviour and its dependency on the
dissemination area size is used to model, predict, and to
limit it under a defined threshold suitable for an emergency
situation. In this regard, our analysis and observations of the
data acquired from the real experimental drives performed on
the E313 highway in Belgium presented in next section, show
a relation between estimation error (e(ti)) of the ETA value,
dissemination area size (i.e., road-length) (L(ti)), the speed of
the EmV (v(ti)) and an index (n(ti)), and this is expressed in
equation 12. The index n reflects the traffic conditions, weather
conditions, time of the day/year, and other parameters that may
impact the speed of the EmV.

e(ti) = f(L(ti), n(ti), v(ti)). (12)

Fig. 6 illustrates the impact of the size of the dissemination
area (Li) on the estimation error, where the dissemination
area is defined between WP-1 and WP-2. The figure shows
that the magnitude of error value is proportional to the
size of the dissemination-area DA − 1, DA − 2, DA − 3,
characterized by a linear increase in the estimation error as
the size of the dissemination area increases from L1 to L2

to L3 respectively. The slope of the estimation error is a
positive and is defined by the change in the actual time of
arrival (ATA) parameter divided by the corresponding change
in the distance parameter, between two distinct points on the
highway segment. Intuitively speaking, within a dissemination
area, the ETA error will be pronounced for vehicles that are
farther away from the reference WP (i.e., WP1 in Fig. 6).

According to our analysis and observations of the data
acquired from the real experimental drives performed on the
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E313 highway in Belgium, the index n has a mean value of
1.06, minimum 0.83, maximum 1.41, and a standard deviation
of 0.16. Furthermore, this index has a tendency to exhibit very
small changes between two successive ETAs calculation, thus
has negligible effect on two successive errors estimations. This
makes it possible to use the previous value of the estimation
error index n(ti) for the proceeding estimation error index
n(ti+1).

Therefore, for every periodically CAM received, we use the
relation between actual time of arrival ATAi, speed of the
vehicle v(ti), and the traveled distance di, obtained at the
time ti as represented in equation 13, to forecast the index n
for the upcoming time ti+1.

n(ti+1) = ATAi
v(ti)

di
. (13)

The dynamically changing index n from every periodically
CAM received is dynamically mirrored on the dissemination
areas sizes L(ti+1) determination (see equation 14), so the
estimation error caused by this size stays under a defined
threshold (emax

i+1 )

Lmax
i+1 <= emax(ti+1)

v(ti)

n(ti+1)
. (14)

The numerical value of the threshold emax(ti+1) is the
maximum estimation error allowed at the end of the generated
dissemination areas (i.e., numerical value of e1 if L1 is
selected, or e2 for L2, or e3 for L3, in Fig. 6). As shown

Fig. 7: The segment of the two way E313 highway in Antwerp,
Belgium. © 2020 Google.

on the Section V-B, since the EmV will constantly move
and update the system with CAM notifications, vehicles will
receive updated values of the ETA, so this will not cause traffic
problems.

V. PERFORMANCE EVALUATION

We evaluated the performance of the BSA application
using a simulation of the case study presented in Section
III by including 4 reference methods in terms of accurate
estimation of ETA, analysing the parameters that impact this
ETA accuracy, and by using real data measurements presented
below in this section.

A. Experimental testbed for reference data collection
In order to analyse the performance of the 4 reference

methods in terms of accurate calculation of ETA, a real dataset
was used as reference. As shown above this dataset consists of
test data that has been acquired by a test vehicle driving on the
selected segment of the E313 highway in Antwerp, Belgium
(see Fig. 7) where the Smart Highway Testbed is installed.
Besides other parameters, the test data captures the ATA of
the test vehicle.

The testbed infrastructure considered consists of the inter-
connected hardware entities, including: a vehicle equipped
with an Onboard Unit (OBU), the backbone, the testbed
management software platform, and the optical fibre ring along
the E313 highway.

As shown in Fig. 8a, one part of the OBU is placed 1.8 m
high on the vehicle roof and contains an accurate GNSS
module AsteRx-m2a with RTK correction, and two GNSS
PolaNt-x MF antennas. The second part of the OBU, shown
in Fig. 8b is placed inside of the vehicle and contains a
processing unit with an independent power system, which can
power the OBU for several hours.

This device records the position of the vehicle expressed
by its latitude and longitude with a predetermined frequency,
the time-stamp when this position is obtained, precise and
reliable heading information, and the vehicle’s speed. These
parameters are identified using an ID and are stored for post-
processing.

Data measurements are obtained at different hours of the
day, months, and years, so we can evaluate the ETA perfor-
mance under diverse traffic conditions. The travel-time data
are collected in November 2020, (2020-11-19, 14:00 to 17:00
CET), June 2019 (2019-06-18, 14:00 - 15:00 CET), and July
2019, (2019-07-17, 12:00 to 14:00 CET).

Figure 9 shows the sample of 10 test drives in terms of the
vehicle’s positions (Fig. 9a) and the time-stamps at the respec-
tive positions (Fig. 9b). The vehicle’s position corresponds to
the position of the OBU recorded by the GNSS device, and
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(a) The OBU Roof Unit mounted on the roof together with the GNSS
antennas.

(b) The OBU Roof Unit placed on the vehicle roof and the OBU Car Unit
placed inside of vehicle.

Fig. 8: The OBU placed on the vehicle.

is shown in Fig. 9a as x and y coordinates as a transform
of the geodetic coordinates specified by latitudes, longitudes,
and height to the local north-east-down Cartesian coordinates
specified by xNorth, yEast, and zDown.

Fig. 9b reflects the time-stamp for each recorded position,
which will be used as the Actual Time of Arrival (ATA) of
the vehicle in our algorithms and analysis. As can be seen, the
speed of the OBU changes resulting in different arrival times
in different sections or distances from the starting point.

B. Results and Analysis

The main purpose of this work was to evaluate the perfor-
mance of the BSA algorithm in terms of the following key
objectives:

1) Comparing the performance of the four reference meth-
ods in terms of accurate ETA calculation.

2) Determining the dissemination area size in order to
obtain ETA estimation errors under an acceptable limit.

3) Analysing the impact of the CAM input frequency on
the ETA estimation error.

For the performance analysis, we use KPIs such as min-
imum/maximum/average/standard deviation of the estimation
error. In addition to this, we use three KPIs to measure the
prediction accuracy of the forecasting methods or estimators
when compared to the values observed (ATAs).

Mean Absolute Error (MAE) is used to obtain the natural
average magnitude of the absolute estimation errors by giving
the same importance to each error. Mean Absolute Percentage
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(b) Real measured travel time, referred as Actual Time of Arrival of the
OBU while driving on the E313 Highway

Fig. 9: Map of the OBU drives on the E313 Highway and their real
time of arrival depending on the distances from the start to the

destination.

Error (MAPE) is used to express accuracy as a percentage of
the error. It is the sum of the individual absolute estimation
errors compared or divided with the respective ATAs. Root
Mean Square Error (RMSE) is used to include and give
importance to the most significant estimation errors or higher
deviations from the observed values. Thus, by considering
these three KPIs we have a complete picture of the estimation
error distribution.

The data sets obtained from the field tests described in the
subsection V-A are used to analyze the difference between
the ATAs and the ETAs as computed by the four reference
methods and thus compared as to which method provides a
more accurate ETA estimation.

As indicated above, for every received CAM notifying the
current location and speed of the EmV, the algorithm generates
ETA values for the whole EmV expected journey. Figure
10 presents the generated ETA values for all points till the
destination based on the information received from the first
CAM notification only. In this figure we compare the predicted
values (ETAs) derived using four reference methods with the
real-time of arrivals (ATAs) recorded by the GNSS receiver,
when the EmV is located at the starting point of the journey
and has a long distance in-front toward the destination. For
the ATAs we have used one of the OBU drives shown in the
Fig.9b.

As expected, the quality of prediction degrades over distance
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Fig. 10: Comparison of the real measured travel time ATA and the
ETA values derived using four reference methods and information

received from the first CAM notification only.

and it diverges more and more away from the ATAs. We can
see that all methods overestimate the arrival time of the EmV
for the area above 600m away from the EmV current location.
In this situation the vehicles at the front will experience the
presence of the EmV much earlier than the notified ETA time,
thus giving drivers limited opportunity to safely manouver
away from the EmV’s path. Our solution avoids this scenario,
since our algorithm is constantly updated with the CAM
notifications, which ensures the update of ETA values too. This
process increase the ETA accuracy by specifying several WPs
along the route path and the distance between successive WPs
(i.e., dissemination area), which is also dynamically adjusted
in order to keep the ETA estimation error below a specified
threshold.

From the Fig. 10, it is observed that the predicted values of
the ETA derived when using the Kalman filter follows more
closely the ATA values obtained on the highway compared
with other three reference methods, which have very similar
outputs. Here we can clearly see the importance of the adaptive
and self-correcting feature of the Kalman filtering that adjusts
itself during the drive, a feature that is not present in the other
3 reference methods.

The difference between the recorded ATAs and the respec-
tive generated ETAs results in a vector containing estimation
error values. This vector contains a maximum, minimum,
average, and standard deviation values that characterises error
values. How the maximum, minimum, average, and standard
deviation for all estimation error vectors change during the
entire journey time of the EmV, until it reaches the target
destination is shown in Fig.11 (for better visibility results are
plotted every 2 seconds). In this case the algorithm is updated
with 1Hz frequency of input data and uses Kalman Filter for
prediction.

For every box plot representing the resulted vector in
Fig.11 we see the peaks of estimation errors (positive and
negative). As observed these predictions errors peaks are
obtained for locations/distances far in-front from the EmV’s
current locations. This can be seen and is described in Fig. 10.
The algorithm is very accurate for short distance predictions
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Fig. 11: Estimation errors obtained on different locations/distances
toward the emergency case when using Kalman filtering.

(area under 1km distance from the starting point in Fig. 10),
thus the estimation error values are very low, however, when
the prediction distance increases the estimation error values
increase too (area above 1km distance from the starting point
in Fig. 10). Since the algorithm is constantly updated with new
CAM notification, the ETA accuracy is constantly updated and
improved as well. This is the first advantage of our solution
compared to existing systems. Also, while the EmV moves
forward toward the target destination, the prediction distance
decreases, therefore the estimation errors decreases too. This
is reflected in Fig.11. While reaching the end of the journey
the range of the estimation errors gets smaller (especially on
the last area, journey time between 150s and 180s).

A comparison of the estimation errors’ peaks obtained using
Kalman filtering, Filter-less method, Simple Moving Average
Filter, and Exponential Moving Average Filter is presented in
Fig. 12a. Additionally, a comparison between the 4 approaches
is presented using Mean Absolute Error (see Fig. 12b) and
Root Mean Square Error (see Fig. 12c). All these KPIs are
shown for the whole distance or for the whole journey time
that the EmV travels toward the intended destination. The
results show that the Kalman Filter exhibits a much lower
estimation errors as compared to the other three reference
techniques. Also, all methods increase the prediction accuracy
while the distance toward the target destination decreases.

More details about numerical results for four differed con-
sidered techniques using four different reference scenarios
with reference to the EmV location or distance from the staring
point are found in Table II.

When the EmV sends the first CAM notification at the
start of journey at position d0, the maximum estimation error
which we obtain is 54.46s for Kalman filtering and 147.57s
for other methods. At this time the MAPE is 41%, if the
Kalman filter is chosen, and 62% for other techniques (see
Table II). Apparently, the estimation using a Kalman filter
performs better with the percentage error reduced by 21%,
from 62% to 41%. The estimation error comparison for all
reference points shows that there is a 21% error reduction
when the EmV is found at d0, (11-13)% at d1, (8-10)% at
d2, and (6-8)% at d3, when using Kalman in comparison with
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TABLE II: Comparison of the estimation error obtained at d0, d1, d2, d3 using different techniques and different performance criterion.

Distance traveled di,
Dissemination area size L

Prediction
Technique Min STD Max Average RMSE MAE MAPE (%)

d0=9.5m, L=1000m Kalman Filtering 0.072 21.94 54.46 9.38 23.86 19.55 41
Filter less method 0.009 47.02 147.57 -27.15 54.30 44.77 62

Simple Moving Average 0.009 47.02 147.57 -27.15 54.30 44.77 62
Exponential Moving Average 0.009 47.02 147.57 -27.18 54.30 44.77 62

d1=710m, L=335m Kalman Filtering 0.086 7.00 28.90 11.33 13.32 11.38 20
Filter less method 0.009 9.50 37.48 16.98 18.42 16.04 31

Simple Moving Average 0.015 9.16 37.92 -27.15 18.68 16.28 33
Exponential Moving Average 0.004 8.91 36.99 15.77 18.12 15.77 33

d2=1598m, L=380m Kalman Filtering 0.012 6.44 24.64 12.15 13.75 12.36 25
Filter less method 0.010 6.44 24.55 12.10 13.71 12.10 33

Simple Moving Average 0.040 6.64 26.43 -27.15 14.66 13.07 35
Exponential Moving Average 0.035 6.60 26.11 12.90 14.49 12.90 34

d3=2361m, L=375m Kalman Filtering 0.061 6.40 22.15 11.57 13.22 11.57 29
Filter less method 0.014 6.38 22.05 11.03 12.74 11.03 35

Simple Moving Average 0.071 6.41 22.39 -27.15 13.34 11.70 37
Exponential Moving Average 0.06 6.40 22.13 11.65 13.22 11.66 36

other methods.
Maximum values, MAE, and RMSE shown in Fig. 12 show

that the Kalman filter performs better, considering the entire
travel time, while we notice a relatively small difference on
estimation error values between the other three methods. Same
observation is shown in Table II using standard deviation,
mean value, minumum and maximum values, MAE, MAPE,
and RMSE for 4 reference positions considered.

Moving to the second objective of this work, it is important
to stress that, in addition to estimation errors inherently caused
by the considered filtering methods, the dissemination area size
also has an impact on the magnitude of the estimation error.

The fact that we share one ETA value for all cars which
are found within a dissemination area, estimation error has
the lowest value at the start of the dissemination area (i.e.,
between two successive WPs) and it increases successively as
it reaches the end of the respective dissemination area (i.e.,
until it reaches the starting point of the next dissemination
area).

In our case, at the first step the dissemination area size is
a default value, equal to 1000m, and then its size changes
according to the speed value extracted from a periodic CAM
notification and the upper error limit or threshold (see eq.
14). As a result, on the second, third, and upcoming CAM
notifications and derivation of the ETA values increases ac-
curacy. Referring to Kalman filtering results, on the second
CAM notification the minimum estimation error tends to be
zero and the maximum error is around 18s at the end of
the first dissemination area (determined or limited by the
threshold value), and 47s at the end of the journey (in our case
more than 3km far form the current EmV location). Although
the error is 47s for the end point of the journey, each new
derivation of ETA will improve accuracy, and civilian cars
will receive updated messages with updated values of ETA
for their respective dissemination areas.

Therefore, as concluded in Section IV-C, the estimation
error is a function of dissemination area size L, speed v, and
the n index, thus we can predict, control, and bound this error
by operating with the aforementioned parameters (eq. 12). To
better showcase this we present the behavior of the estimation
error at four considered reference EmV locations (see Figure
13). For all cases considered, including here four reference

scenarios with reference to the distances form the starting
point selected as d0, d1, d2, and d3, and four techniques used,
are provided and compared numerical results of the estimation
errors (Fig. 13 and Table II) and their Cumulative Distribution
Function (CDF) (Fig. 14)

When the EmV was at d0, Fig 13a, the dissemination area
sizes were 1000m (used as a starting default value), and in
this case the RMSE for Kalman filtering is 23.86s, while it is
54.30s for other three techniques. Then, when the EmV moved
and reached d1 or traveled 710m from the starting point, Fig.
13b, our algorithm adjusts the dissemination area size in order
to decrease the estimation error, thus the new size becomes
335m, while the RMSE of the estimation errors are found to be
18.42s for Filter-less method, and 18.68s for Simple Moving
Average Filter, and 18.12s for Exponential Moving Average
Filter, compared to Kalman filtering 13.32s. This clearly shows
that the adjustments in the self-correcting algorithm decrease
continuously the estimation error. Fig. 13c and Fig. 13d are
cases when the EmV moved further to d2 equal to 1598m
distance, respectively d3 equal to 2361m distance from the
starting point, and the dissemination area sizes were rounded
as 380m, respectively 375m, while the obtained results support
the previous conclusions. Again, Table II can be used for other
KPIs comparison, respectively minimum, maximum, mean,
standard deviation, MAE, MAPE of estimation errors. The
respective CDF results in Fig. 14a, 14b, 14c, 14d, echo the
above conclusions.

With the dynamic adjustments of dissemination area sizes,
applied by extracting the EmV’s speed from the received
CAM, as well as the maximum allowed error (threshold),
our algorithm is capable of providing more accurate ETA
estimations. This is the second advantage of our solution
compared to the existing systems.

Analyzing all four sample cases with reference to the
distances passed by the EmV from the starting point (d0,
d1, d2, and d3), for all considered techniques in this study,
it is evident that the rise in estimation error is smaller for
Kalman filtering compared with Filter-less method, Simple
Moving Average Filter method, and Exponential Moving Av-
erage Filter method. Also we see that the estimation error is
decreasing as the EmV approaches the target destination. As
we discussed earlier in this section, this decrease in estimation
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(a) Maximum estimation error values.
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(b) Mean Absolute Error values.
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(c) Root Mean Square Error values.

Fig. 12: Comparison of the estimation errors obtained on different
locations/distances toward the emergency case for the considered

techniques and for the entire journey.

error occurs due to self-correcting nature of our algorithm that
constantly considers the updated CAM data and dynamically
adjusts dissemination area size, but also due to the prediction
distance from the destination, which is getting shorter as the
vehicle moves forward.

In addition to this, we explored the variations we received
when we changed the window sizes of the average speed as

input data for Moving Average filter (eq. 5) and Exponential
Moving Average filter (eq. 6), from 5s to 10s, and 50s. The
results obtained when changing the windows size does not
show an improvement compared to Kalman filtering. On the
contrary, for some locations on the case study, averaging speed
values for longer intervals produced an underestimation of the
EmV arrival time.

It is important to recall that in this new proposed solution,
vehicles will receive early notification of an approaching EmV,
thus they will clear the required lane. In this new situation the
EmV can always select the shortest path or/and the path where
it can drive at the maximum allowed speed for emergency
systems, thus there is no need for long time speed data history
to provide an accurate ETA calculation. This is the third
advantage of our solution compared to existing systems.

As presented on the third objective of this work, we in-
cluded results we obtained when changing the input CAM
frequency. Here it is evident that the CAM frequency affects
the estimation error due to the more granular input data. Fig
15 shows the results obtained when changing the CAM period
from 0.1s, to 1s, 2s and 3s. It is observed that increasing the
period of CAM generation or decreasing the CAM frequency
results with higher estimation errors. However, the difference
in maximum MAE values, when different CAM frequencies
are considered is less than 2 seconds. Such small value does
not affect the performance of BSA, because the MEC service
sends periodic updates to the vehicles in a timely manner, i.e.,
early enough to clear the lane. For example, if notification
for a civilian vehicle indicates that an EmV is approaching
in 2 minutes (which is an ETA value), and EmV arrives in 2
minutes and 2 seconds or 1 minute and 58 seconds, it would
not affect the driver’s decision to clear the lane. According to
study provided in [43], the average duration of lane change
on the highways is 5.8s, which means that driver will need to
make a plan on the lane change upfront, and 2 seconds will
clearly not play a significant role in this decision.

Finally, we observed the computational time complexity of
the Kalman Filter compared to other methods. The Kalman
Filter, as explained above, it has initialization, prediction, and
correction steps, for every input value. It has a recursive
nature, which means it uses the output as an input to the next
calculation. This increases computational time compared to
the other three methods considered in this study. However, as
seen in the Fig 15, Kalman filter sustains better stability on the
accuracy compared to other methods when the CAM period
increases from 1s to 2s, and 3s. So, choosing between longer
computational time vs better prediction results, we consider
it is better to have better prediction results since the changes
in the computational time are not relevant for an emergency
situation.

VI. CONCLUSION

In this paper we introduced the BSA application for provid-
ing an early notification of the ETA of an approaching EmV.
The ETA is calculated by the BSA service placed within the
MEC system. As the ETA algorithm provides the main logic
to the BSA application, the performance of this self-correcting
algorithm has been analyzed and evaluated in terms of achiev-
able accuracy of ETA, by incorporating dynamic dissemination
area size and use of different forecasting techniques. The real
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(a) e, d0 = 9.5m,L = 1000m.
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(b) e, d1 = 710m,L = 335m.
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(c) e, d2 = 1598m,L = 380m.
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(d) e, d3 = 2361m,L = 375m.

Fig. 13: Comparison of the estimation errors for different dissemination areas size.
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(a) CDF at d0.
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(b) CDF at d1.
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(c) CDF at d2.
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(d) CDF at d3.

Fig. 14: CDF for estimation errors in case of different dissemination areas size.
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Fig. 15: Comparison of the MAE maximum values obtained for the
whole journey of the EmV using different period T for CAM

notifications.

field data measurements obtained in a realistic environment,
in Smart Highway testbed in Antwerp, Belgium, are used for
evaluation and comparison.

First, the developed algorithm is periodically updated with
the EmV speed and location information, to follow the flow
and fast changes in the traffic, and it uses these inputs for its
self-correcting behavior to improve the ETA accuracy.

Second, the developed algorithm analyses the dependency
between estimation error, dissemination area size, and the
EmV speed while heading to the emergency case. As a
result, it provides the concept of dynamic dissemination area
size allocation. This newly added feature to our proposed

BSA algorithm maintains the estimation error under a defined
threshold, required for an emergency situation.

Using two above innovative application features, a com-
parison between Kalman filter, one step speed values from
CAM referred as Filter-less method, average speed values
using Moving Average filter, and Exponential Moving Average
filter, is performed to derive conclusions regarding the methods
capability to provide more accurate ETA estimation and lower
estimation error. According to our results, the Kalman filter
proved to produce the best result by providing the highest es-
timation accuracy, comparing to the other prediction methods.
This Kalman accuracy gain becomes even more relevant when
the algorithm needs to predict for long distances in-front.

The computational time complexity of the Kalman Filter
is higher compared to other methods because of its recursive
nature, however, it has the same order of magnitude hence the
increase in time is not significant.

In this new situation when the ETA notification is beyond
the audio and visual range of the EmV, drivers have enough
time to take the required actions and clear the lane, the EmV
can always select the shortest path toward the destination and
drive at the maximum allowed speed for emergency systems,
by constantly being updated with traffic changes. As a result,
the proposed solution is expected to not only improve the road
safety standards, but also enhance the mission success and
response time of emergency responders.
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