
1

Open Radio Access Networks (O-RAN)
Experimentation Platform: Design and Datasets

J. Xavier Salvat, Jose A. Ayala-Romero, Lanfranco Zanzi, Member, IEEE,
Andres Garcia-Saavedra, and Xavier Costa-Perez, Senior Member, IEEE

Abstract—The Open Radio Access Network (O-RAN) Alliance
is driving the latest evolution of RAN deployments, moving from
traditionally closed and dedicated hardware implementations
towards virtualized instances running over shared platforms
characterized by open interfaces. Such progressive decoupling of
radio software components from the hardware paves the road for
future efficient and cost-effective RAN deployments. Nevertheless,
there are many open aspects towards the successful implemen-
tation of O-RAN networks, such as the real-time configuration
of the network parameters to maximize performance, how to
reliably share processing units among multiple virtualized base
station (vBS) instances, how to palliate their energy consumption,
or how to deal with the couplings between vRANs and other
services co-located at the edge. Intending to shed light on these
aspects, in this article, we showcase the design principles of an O-
RAN compliant testbed, and present different datasets collected
over a wide set of experiments, which are made public to foster
research in this field.

Index Terms—O-RAN, vRAN, RAN Intelligent Control.

I. INTRODUCTION

The O-RAN Alliance is a joint effort in the mobile industry
to redesign the future Radio Access Network (RAN) technolo-
gies [1]. The key principles are threefold: (i) intelligent RAN
control at different timescales to foster innovation; (ii) open
interfaces between control-plane components and network
functions to break the traditional vendor lock-in; and (iii)
virtualization to improve flexibility and reduce costs.

However, the advent of O-RAN raises novel technical chal-
lenges. First, the higher level of flexibility comes at the cost of
less predictable performance and computing resource demand.
In contrast to the traditional hardwired base stations (BSs), the
computing resources needed by a virtualized BS (vBS) vary
with the context, including network load, the modulation and
coding scheme (MCS) used, channel quality, etc. The mapping
between this high-dimensional set of parameters and the
requirements for computing resources or energy consumption
is very complex and hard to predict [2].

Second, virtualizing RAN functions over a shared infras-
tructure can provide high flexibility and cost efficiency, but the
overhead introduced when contending for a shared resource
compromises reliability to execute signal processing tasks

J. X. Salvat, J. A. Ayala, L. Zanzi, and A. Garcia-Saavedra are with NEC
Laboratories Europe GmbH, Heidelberg, Germany.

X. Costa-Pérez is with NEC Laboratories Europe GmbH, Heidelberg,
Germany, and i2CAT Foundation and ICREA, Barcelona, Spain.

The work was supported by the European Commission through Grants No.
SNS-JU-101097083 (BeGREEN) and 101017109 (DAEMON). Additionally,
it has been supported by MINECO/NG EU (No. TSI-063000-2021-7) and the
CERCA Programme.

within tight time deadlines. In fact, different works show that
resource contention between NFs sharing computing infras-
tructure may lead to up to 40% of performance degradation
compared to dedicated platforms [3] This coupling between
radio resource allocation and computing requirements poses
new challenges [2].

Third, RAN virtualization poses a new energy consumption
profile compared to traditional BSs that operate with dedicated
hardware [4]. The energy consumption of vBSs not only
depends on the network state (e.g., traffic load, SNR), but
also on the general-purpose hardware (e.g., CPU/GPU) and
the software implementation of the radio stack.

Finally, when considering AI services running at the edge
of the network, both the edge and network configuration are
intertwined [5]. That is, the configuration of the edge services
(e.g., QoS) and the network (e.g., channel capacity) jointly
impact both service performance and power consumption of
the whole system. Therefore, evaluating and orchestrating the
system at once, although challenging, can bring global benefits
in terms of performance and energy.

To shed light on these aspects, we present an O-RAN
testbed that provides a prototypical environment to experiment
with different network settings and evaluate machine learning
(ML) solutions to the above problems. Using this testbed,
we collect three datasets aimed at contributing to different
relatively-unexplored aspects of O-RAN. The datasets are
publicly available at [6] and are described as follow:

• Computing dataset characterizes the computing usage of
vBS as a function of several contextual (e.g., traffic load,
channel quality) and configuration (e.g., MCS, CPU time)
parameters. We also evaluate the effect of several vBS
instances sharing the same platform [2].

• Energy dataset measures the energy consumption of a
vBS as a function of a wide range of parameters (e.g.,
MCS, airtime, computing platform, bandwidth). The en-
ergy measurements are taken in parallel using software
tools and an external digital power meter [4], [7].

• Application dataset considers an AI service running in an
edge server. It characterizes at the same time the service
performance and the consumed energy of the vBS and
edge server as a function of their joint configuration [5].

These datasets are the result of the study of different
problems addressed in our previous work. In particular, [2]
proposes a deep reinforcement learning approach to allocate
the computing resources of a virtualized RAN (vRAN). In [7],
the energy consumption of the uplink is studied and charac-
terized using an analytical model. In [4], a Bayesian learning

2

algorithm is proposed to allocate vRAN radio resources,
balancing energy and performance. Finally, [5] uses online
learning to jointly configure the vRAN and an edge AI service
to save energy while providing performance guarantees.

Other related works consider the deployment of vRANs
on commodity hardware [8], [9]. The authors in [8] pro-
pose a CPU scheduling framework to collocate the vRAN
with general-purpose workloads while meeting the latency
requirements. In [9], an optimized data processing pipeline is
proposed to handle the high computational demand of massive
MIMO processing in software-only systems. Finally, ColO-
RAN [10] presents an SDR-enabled large-scale framework to
test O-RAN RIC algorithms. For example, OrchestRAN [11],
a RIC algorithm that orchestrates other data-driven algorithms
based on mobile operators’ intents, is prototyped and evaluated
in ColO-RAN.

II. O-RAN ARCHITECTURE

Fig. 1 provides an overview of the O-RAN architecture.
Like 3GPP, O-RAN distributes all the functions of a gNB
across three main Network Functions (NFs): (i) a Radio
Unit (O-RU), (ii) a Distributed Unit (O-DU), and (iii) a
Central Unit (O-CU) [12]. The O-RU hosts the lowest physical
layer (PHY) tasks, including amplification, signal sampling,
and FFT operations; the O-DU hosts the RLC, MAC, and
higher PHY operations such as forward error correction (FEC).
Finally, the O-CU accommodates the RRC, SDAP, and PDCP
layers. In addition, O-RAN specifies an O-Cloud platform
to host virtualized NFs (VNFs), including an acceleration
abstraction layer (AAL) to offload signal processing operations
such as FEC or FFT.

In the control plane, O-RAN introduces a non-real-time
RAN intelligent controller (non-RT RIC), and a near-real-
time RAN intelligent controller (near-RT RIC). The non-RT
RIC is hosted by the Service Management and Orchestration
(SMO) framework and enables control loops at large time
scales (i.e., seconds or minutes). Formally, the different control
applications that run within the non-RT RIC are called rApps,
and they support different tasks such as analyzing RAN
monitoring information or issuing control policies. Conversely,
the near-RT RIC supports control loops over sub-second time
scales (i.e., ∼10ms) through the so-called xApps.

O-RAN defines four key interfaces –O1, A1, E2, and O2–
which allow information exchange among the components
of the architecture. Specifically, the O1 interface enables
operation and management procedures, such as FCAPS (Fault,
Configuration, Accounting, Performance, and Security), and
software and file management. The A1 interface connects
the non-RT RIC with the near-RT RIC and enables the
enforcement of control policies defined at the upper archi-
tectural levels. The near real-time RIC connects to the O-gNB
components (O-CU, O-DU, and O-RU) by means of the E2
interface, enabling the enforcement of control policies and data
collection. Finally, the O2 interface connects the SMO with the
O-Cloud to enable infrastructure monitoring and management.
On the other hand, O-RAN leverages on the 3GPP fronthaul
interfaces, which are an enabler of the gNB disaggregated
architecture.

NG-u/X2-u/Xn-uF1-c

Open FH

E1

E2

F1-u

E2

E2

O1 E2

O-CU-CP

O-CU-UP

O-RU
O-Cloud

O-gNB

A1O1

rAPP rAPP

SMO Framework

Non-RT RIC

Near-RT RIC

xAPP xAPP

O-DU

O2

O1

O1

O1
E2

RT

< 10 ms

Near RT

� 10 ms

NG-u/X2-u/Xn-u

3GPP interfaces

O-RAN

O-gNB

Fig. 1. O-RAN architecture. On the left, the O-gNB and the O-Cloud
are shown with the O-RAN RAN Intelligent Controllers (RICs). On
the right, a detailed scheme of the O-gNB functionalities.

III. TESTBED DESIGN AND IMPLEMENTATION

This section presents an O-RAN compliant testbed that
enables experimentation with vRAN deployments and eval-
uation of resource allocation and orchestration algorithms. We
also detail its design principles and its implementation. Fig. 2
depicts the main functional blocks and overall architecture,
while Fig. 3 shows the real testbed.

A. Virtualized RAN Computing Platform

As depicted in Fig. 2, the testbed hosts 1 multiple user
equipments (UEs), each one attached to 2 a virtualized vBS
instance running in 3 a shared computing platform. Each UE
consists of a radio head and a set of dedicated computing re-
sources provided by a laptop. Such resources host the complete
radio protocol stack and processes from heterogeneous mobile
applications. Both UEs and vBSs use a USRP B210 board as
a radio head, and the srsRAN [13] software to implement the
radio protocol stack. The vBSs’ USRP boards are attached to
the computing pool via a USB3.0 connector, while the srsRAN
vBSs run as containerized software instances using Docker.
To ensure repeatability, UEs and vBSs’ radio front-ends are
connected with RF SMA cables and 20dB attenuators. Each
UE is connected to one vBS, emulating the aggregated traffic
volumes generated over a cell. In our testbed, we support a
maximum of 5 UEs and 5 vBS.

The computing platform 3 features commercial off-
the-shelf components like an 8 cores Intel i7-7700K CPU
and Ubuntu operating system (OS). For the purposes of
our tests, the kernel has been compiled with the option
of CONFIG_RT_GROUP_SCHED, so that resource allocation
can be performed on real-time threads. 6 computing cores
are reserved for the shared pool by means of systemd’s
CPUAffinity. Specifically, considering the CPU’s topology
depicted in Fig. 4, we use cores 0 and 4 to run the OS’
processes and cores 1–3 and 5–7 to run the Docker instances
containing vBSs. Thus, the access to the L1–L2 caches of both
core sets is isolated, minimizing the residual computing noise
coming from the OS.

B. Service Management and Orchestrator and Mobile Core

3

Time-series

database

vRAN shared Compu�ng

pla�orm (O-Cloud)

Service Management

& Orchestrator (SMO)

Virtual vBS Instances

Radio Units

USRPS

Shared CPUs

Non-RT RIC

rApp

rApp

rApp

Power meterUEs

Laptops

Near-RT RIC

xApp

xApp

xApp

Lifecycle mgmt. of

di�erent instances

Monitoring

Push radio and

compu�ng policies

AI/ML

Engine

Edge applica�on server

AI/ML appsTra�c gen.

vRAN Operator

Dashboard

Retrieve

metrics

vBS vBS vBS vBS

1 2 3 N

1 2

3 4

5

7

8

9

6

O-cloud Mgmt

&

Orchestration

Mobile

Core
SMA cables

Fig. 2. Detailed testbed architecture.

Fig. 3. Picture of the testbed.

Physical Core #0

Core #0

Core #4

L1i/L1d #0

L2 #0

L1i/ L1d #1

L2 #1

L1i/ L1d #3

L2 #3

L3 (LLC) #0

Physical Core #1

Core #1

Core #5

Physical Core #3

Core #3

Core #7

L1i/ L1d #2

L2 #2

Physical Core #2

Core #2

Core #6

Fig. 4. CPU architecture of the vRAN shared computing platform.

As shown in Fig. 2, the SMO 4 and the mobile core
functions 5 are deployed in separated computing nodes from
the vBSs. The near-RT RIC is co-located with the vBSs, while
the SMO hosts the non-RT RIC and the functionalities to
manage and orchestrate the O-Cloud infrastructure. We use
a custom version of the non-RT RIC and the near-RT RIC.

As the SMO hosts the functions to orchestrate and manage
the O-Cloud infrastructure using the O1 and O2 interfaces,
it allows us to set up different virtual networks and start,
stop, and remove a dynamic number of vBSs configuring the
resources, such as the computing time and the computing cores
that shall be allocated to each instance. Furthermore, it can
start and stop UEs and the mobile core. We support different
testbed scenarios that require ad-hoc solutions to orchestrate
the different entities. We develop a set of different functions
using the python’s Docker library for this purpose. We

also set up Docker daemon instances in the different hosts
to retrieve and enforce SMO policies.

Besides, the SMO allows us to define and enforce new
configuration policies via the non-RT RIC, which forwards the
configuration policies to the near-RT RIC. In turn, the near-RT
RIC enforces them in the vBSs. Also, the SMO features an
AI/ML engine to support different rApps. The O-RAN RIC
control interfaces A1 and E2 are implemented using the ZMQ
message library. The vRAN orchestration algorithms under test
are deployed using the AI/ML engine. This entity has access to
a time-series database 8 to retrieve the monitoring metrics.

We use a containerized version of srsEPC [13] to emulate
mobile core functionalities. srsEPC is deployed into a separate
host reachable by the Edge application server and attached
UEs. We connect the vBS to the mobile core using Docker’s
host networking.

Finally, the operator dashboard 9 is a custom python
framework that allows us to interact with the SMO. The oper-
ator dashboard enables the configuration of the experimental
scenario, including traffic and SNR patterns, the use of an AI
service located at the edge server, the number of active vBS
and UEs, and the vRAN algorithm to be tested.

C. Traffic Generators and Other Applications

Our testbed has an edge application server 6 enabled with
a NVIDIA GeForce RTX 2080 Ti GPU. In some scenarios,
we use this server as a source for downlink (DL) traffic
and a sink for uplink (UL) traffic, using MGEN for this

4

purpose. In other scenarios, this server hosts edge AI services.
In our experiments, we select an object recognition service
due to its popularity in computer vision applications (e.g.,
vehicle navigation, surveillance systems, mobile health, etc.)
and high resource demand (GPU processing is required). In
particular, we deployed detectron2, an open-source object
recognition software. In our experiments with the edge service,
the UE sends an image from the well-known COCO dataset,
and the server replies with the bounding boxes and labels
computed by detectron2. Both the traffic generators and
the edge AI services are deployed using Docker containers.

IV. METRICS AND DATA STORAGE

To gather monitoring metrics from the vRAN platform and
the O-Cloud, we use an O-RAN compliant monitoring system.
The near-RT RIC subscribes to the O-RAN components de-
ployed so that it retrieves the different radio metrics through
the E2 interface [14]. Afterward, the near-RT RIC passes the
data using the A1 interface to the non-RT RIC. We developed
an rAPP to push data coming from the different vBS into
the time-series database. Moreover, the SMO can set up
performance management (PM) jobs to gather metrics from
the O-Cloud platform, mobile core, and edge server. We use
Telegraf and its file extension as a metric agent collector
to gather the data from all the PM jobs and send it to the time-
series database periodically. To ease the final processing of
multi-host data sources, we keep clock synchronization of all
hosts by using the Precision Time Protocol (PTP). To store the
monitoring metrics database, we use InfluxDB time-series
database. We also use Grafana to visualize data in real-
time. In the following, we present a complete description of
the metrics that can be collected from our testbed.

A. Computing Metrics

The computing utilization for the vBS Docker instances
deployed in the computing pool can be gathered by using
a PM job that periodically reads the information in /proc
filesystem (for each thread and in each container), and returns
the computing utilization for each computing core in use. The
scripts save the information to a JSON file, which can be
easily read and processed by Telegraf, enabling xApps and
rApps access to this information. Furthermore, we also use
the kernel tool perf to measure low-level metrics for each
container, such as the number of cache misses, the number of
core cycles, and the number of instructions.

B. srsRAN Metrics

We collect metrics from all the srsRAN software instances
(UEs and vBSs). In the case of the vBSs, we enhance
srsRAN by adding the E2 interface allowing the near-RT RIC
to subscribe and periodically receive monitoring information
from the different layers of the protocol stack, such as the
SNR, the uplink and downlink MCS, or the traffic demand for
both directions, as well as the uplink decoding time and the
subframe time processing. In the case of the UEs, we modified
srsRAN to save standard metrics into a JSON file to be read
by Telegraf.

C. Per-flow Metrics

We gather per-flow metrics of the different traffic gen-
erated/received by UEs to/from the application server by
using IP tables packet and byte counters. Upon starting a
new UE and its traffic generator or application instance, we
add two new tables to each container’s IP tables, namely
TRAFFIC_ACCT_IN and TRAFFIC_ACCT_OUT, to track
traffic into the INPUT and OUTPUT directions. We add
dedicated rules to match the IP addresses of the UE and
the application and obtain the cumulative count of packets
and bytes hitting these rules, saving them into a file that is
periodically read by Telegraf.

D. Energy Consumption Metrics

We use software tools and an external digital power meter
7 to measure the energy consumption of different testbed

components. In particular, for the software energy measure-
ments of vBSs, we use Intel’s Running Average Power Limit
(RAPL) functionality using the Linux tool turbostat.
RAPL estimates the power consumed by the CPU by using
hardware performance counters and I/O models. Similarly, we
obtain the GPU power consumption using the NVIDIA driver
via nvidia-smi.

Note that software measurements only consider the main
processing unit (CPU or GPU). In contrast, hardware measure-
ments capture the entire platform’s power (e.g., CPU, GPU,
motherboard, RAM memory, etc.) and the radio head. We use
the digital power meter GW-Instek GPM-8213 along with the
GW-Instek Measuring adapter GPM-001 to retrieve this data.
These measurements are collected by the edge application
server via an SCPI interface and saved into a file to be read
by Telegraf.

E. Radio Control Policies

The vRAN orchestration algorithms can enforce different
radio policies on vBSs. As shown in related works using this
testbed [2], [5], [4], [15], [7], the use of different radio policies
is fundamental, for example, to balance energy consumption
and performance or to adapt to the available computing
resources. We use the E2 O-RAN interface to control the
following radio parameters dynamically:

• Modulation and Coding Scheme: upper-bound and fixed
values. This radio policy is used in [2], [4], [5], [7] to
set the available computing resources.

• Transmission Gain: to evaluate different SNR patterns or
to save energy.

• Airtime (UL and DL Physical Resource Blocks): We con-
figure the maximum number of radio blocks per subframe
on uplink and downlink directions, which modifies the
ratio of used radio resources.

V. DATA SETS

In this section, we describe the organization and metrics
of three datasets collected with our testbed and saved in
CSV format. The datasets are available on the IEEE DataPort
portal [6].

5

COMPUTING DATASET ENERGY DATASET APPLICATION DATASET
Configuration Parameters Configuration Parameters Configuration Parameters

Column Label Description Column Label Description Column Label Description
1 mcs dl i vBS i DL MCS 2 BW Bandwidth 3 BW Bandwidth
2 mcs ul i vBS i UL MCS 5(6) traffic load dl(ul) DL(UL) load 4 img resolution Image size
3 dl kbps i vBS i DL load 7(8) txgain dl(ul) TX gain 5 airtime ratio airtime alloc.
4 ul kbps i vBS i UL load 9(10) selected mcs dl(ul) DL(UL) MCS alloc. 6 gpu power GPU alloc.
5 cpu set i vBS i CPU set 11(12) selected airtime dl(ul) DL(UL) airtime alloc.

Measurements Measurements Measurements
Column Label Description Column Label Description Column Label Description
6-13 cpu i Avg. CPU usage 23(24) thr dl(ul) Avg. DL(UL) throughput 7 av end2end delay Avg. delay
14 explode Successful? 25(26) bler dl(ul) Avg. DL(UL) Block Error Rate 12-17 AP(1-6) Avg. Precision

28 pm power Avg. HW power 18-23 AR(1-6) Avg. Recall
29 pm var Var. HW power 24 powermeter av Avg. HW power
30 pm median Median HW power 25 powermeter var Var. HW power
31 n pm Nr. of HW power samples 26 powermeter median Median HW power
32 rapl power Avg. SW power 27 rapl av Avg. SW power
33 rapl var Var. SW power 28 rapl var Var. SW power
34 n rapl Nr. of SW power samples 29 gpu av Avg. GPU power

30 gpu var Var. GPU power

TABLE I
RELEVANT FIELDS IN COMPUTING, ENERGY, AND APPLICATION DATASETS [6].

A. Computing Dataset Description

This dataset relates to the research activities published in [2]
and considers the instantiation of a different number of vBSs
over the same computing platform. With reference to Fig. 2,
we adopted the components 1 , 2 , 3 , 4 , 5 , 6 ,
8 and 9 . The vBSs are instantiated in specific CPU core

sets with different time-sharing allocations. Each vBS has
an associated context, composed of the traffic demands and
statistics about the used MCS for both UL and DL. We remark
that different network parameters (e.g., the MCS index) have
impacts on the CPU load, mainly due to coding/decoding
workloads. We run a 20-second experiment for each row in
the dataset with a specific context, and evaluate the impact
(and cross-interference) of the processing workload across the
running instances. The resulting per-core CPU utilization is
the average of the samples collected every 200 ms.

We collected two sets of data. The measurements in
datasets unpinned directory consider the default Linux CPU
scheduler policy. It allocates CPU resources in an unrestricted
manner and, therefore, the workloads of different vBSs share
CPU cores. We consider heterogeneous deployment cases,
spawning from one to five concurrent vBS instances. The
measurements in datasets pinned directory are collected with
a set of CPU cores dedicated to each vBS instance (i.e., CPU
pinning) that provides isolation between vBS workloads. In
particular, we deploy two vBS instances and consider two
different pinning options: (i) pin one vBS to core 1 and
the second vBS to core 2, and (ii) we change the pinning
configuration of the second vBS to core 5. In this way, we can
compare the computing utilization when L1 and L2 caches are
shared or not.

Second, we deploy four vBSs and carry out a similar
experiment. In the first case, we pin the vBSs to cores 1,
2, 3, and 4, respectively. In this way, vBSs have the L1 and
L2 caches isolated. In the second experiment, we pin them in
cores 1, 5, 2, and 6, respectively. In this scenario, there is L1
and L2 cache isolation between the sets of vBSs 1,2 and 3,4,
but there is no cache isolation between the vBSs 1 and 2, and
3 and 4. The dataset contains the following metrics. Columns

mcs dl i, mcs ul i, dl kbps i, ul kbps i and cpu set i define
the context of a vBS i, which represent the instantaneous DL
MCS index, UL MCS index, the traffic demand in downlink
and uplink (in kbps), and the CPU core set configuration. The
measurements for the i-th computing core are provided by the
column cpu i. Finally, when column explode takes the value
True, it indicates that the traffic demand has not been served
correctly, which is correlated to the lack of computational
resources. Conversely, when explode is set to False the traffic
is served successfully. Table I (left) summarizes the above.

B. Energy Dataset Description

This dataset used in [4], [7] aims to characterize the
power consumption of a vBS. These experiments adopted
the same components presented in the previous scenario, with
the addition of the power meter 7 . The main configuration
parameters, shown in Table I (middle), are related to the traffic
load, SNR, MCS, and airtime in both DL and UL. Note that,
to measure different SNR values, we modify the transmission
gain of the USRPs.

The dataset comprises two files. The file dataset ul.csv only
considers UL traffic [7], while in dataset dlul.csv considers
both concurrent UL and DL traffic loads [4]. Each row
corresponds to 1 minute execution of a fixed configuration.
The most important metrics in the dataset are shown in the
bottom part of Table I. We measure the consumed power
via software (RAPL) and hardware (digital power meter), as
explained in Sec. IV. We also measure the block error rate
(BLER) and the throughput. Other interesting metrics in the
dataset are the average decoding time of the uplink transport
blocks, the clock speed of the CPU in the computing platform,
and the buffer state of the UE and vBS.

C. Application Dataset Description

In this dataset, used in [5], we consider the scenario of a mo-
bile user accessing an AI service running in an edge server, and
measure how the joint configuration of the vBS, AI service,
and the edge server settings impact the power consumption and
service performance. To launch these experiments we deploy

6

an AI/ML application in 6 shown in Fig. 2 and used 1 ,
2 , 3 , 4 , 5 , 8 and 9 .

In this dataset, the configuration parameters include the
airtime (airtime ratio), the image resolution (img resolution),
which indicates the percentage of the original size of the
image, and the GPU speed (gpu power), which indicates the
maximum power that the GPU is allowed to dissipate. Thus,
the higher the GPU speed, the faster the processing.

For each row in the dataset, 150 images from the COCO
dataset are processed by the edge server, which returns the
bounding boxes and labels of the objects in the image. For each
image, we measure (i) the end-to-end delay that includes the
time incurred by a user request (an image) to be delivered to
the service, the processing time (GPU delay), the time incurred
to reach the user with the reply; (ii) the image processing
delay (imp proc delay) indicates the time to load and resize
the images at the user side; (iii) the GPU delay (gpu delay)
indicates the delay incurred by the GPU at the edge server; (iv)
Number of detected objects (num obj); (v) Average precision
in the object recognition task (AP per image). Moreover, we
also include in each row global measurements as a result
of averaging across all the images. To measure the global
performance of the object recognition service, we also provide
several precision and recall values, namely AP1-AP6 and AR1-
AR6 [5].

Finally, to measure the global power consumption, we
provide the columns rapl av and rapl var that measure CPU
consumed power using RAPL. Additionally, the power con-
sumed by the GPU-enabled edge server is measured using
the power meter (powermeter av and powermeter var) and
software (gpu av and gpu var).

VI. NOVEL APPLICATIONS

In this section, we describe some examples of novel ap-
plications for the presented datasets. Using the computing
dataset, we plot in Fig. 5, the CPU usage of a shared
computing platform as a function of a different number of vBS
instances for three different channel quality configurations.
Specifically, we observe that the CPU usage does not scale
linearly with the number of vBS due to the interference among
processes (called the noisy neighbor problem), even when the
processes are pinned. Moreover, we also observe that the CPU
usage also depends on other parameters, such as the channel
quality. This motivates the need for predictive ML models
that can anticipate the CPU demand given the context and
the configuration of the vBS instances. This is of enormous
importance as a deficit of computing resources can lead to
synchronization loss and drastic network throughput decay.

Concerning the energy dataset, this data can be used to
fit the linear energy model proposed in [7] or a potentially
extended model considering also the DL. Similarly, the appli-
cation dataset can be used to train models of the consumed
power of an edge AI service. These energy models can be
very useful for the research community, as they allow us to
accurately predict the consumed power of a mobile network as
a function of its configuration and can be used, for example,
to derive novel energy-driven strategies for green networking.

1 2 3 4 5
0
1
2
3
4
5
6

CP
U
us
ag
e
(c
or
es
) Low SNR

1 2 3 4 5
Number of vBS instances

Mid SNR
Measured Ideal isolation

1 2 3 4 5

High SNR

Fig. 5. Computing usage for different SNR configurations and
different number of vBSs compared to expected linear increase.

VII. CONCLUSIONS

In this paper, we described the setup of an O-RAN compli-
ant testbed, starting from its design principles towards practical
implementation and technical aspects, using off-the-shelf net-
working equipment and virtualization software. Additionally,
this paper is accompanied by 3 datasets, collected from our
testbed, each one focusing on different scenarios (i) Computing
dataset characterizes the computing usage of vBS instances on
shared computing platforms; (ii) Energy dataset measures the
energy consumption of a vBS as a function of a wide range
of parameters; and (iii) Application dataset characterizes the
joint impact of the network and an edge service configuration
on the energy consumption and performance of the system.
We believe these datasets, together with our practical insights,
can promote research in this field and foster the development
of novel solutions for the efficient sharing and management of
radio and computing resources in open radio environments.

REFERENCES

[1] M. Polese et al., “Understanding O-RAN: Architecture, interfaces,
algorithms, security, and research challenges,” IEEE Communications
Surveys & Tutorials, 2023.

[2] J. A. Ayala-Romero et al., “vrAIn: Deep Learning based Orchestration
for Computing and Radio Resources in vRANs,” IEEE Transactions on
Mobile Computing, 2020.

[3] A. Manousis et al., “Contention-aware Performance Prediction for
Virtualized Network Functions,” in ACM SIGCOMM, 2020.

[4] J. A. Ayala-Romero et al., “Orchestrating Energy-Efficient vRANs:
Bayesian Learning and Experimental Results,” IEEE Transactions on
Mobile Computing, 2021.

[5] ——, “Edgebol: Automating energy-savings for mobile edge ai,” in ACM
CoNEXT, 2021.

[6] J. X. Salvat Lozano et al., “O-RAN experimental evaluation
datasets,” 2022, Accessed on 09.03.2023. [Online]. Available: https:
//dx.doi.org/10.21227/64s5-q431

[7] J. A. Ayala-Romero et al., “Experimental Evaluation of Power Con-
sumption in Virtualized Base Stations,” in IEEE ICC, 2021.

[8] X. Foukas et al., “Concordia: Teaching the 5g vran to share compute,”
in ACM SIGCOMM 2021 Conference, 2021, pp. 580–596.

[9] J. Ding et al., “Agora: Real-time massive mimo baseband processing
in software,” in International Conference on Emerging Networking
Experiments and Technologies, 2020, pp. 232–244.

[10] M. Polese et al., “Colo-ran: Developing machine learning-based xapps
for open ran closed-loop control on programmable experimental plat-
forms,” IEEE Transactions on Mobile Computing, 2022.

[11] S. D’Oro et al., “Orchestran: Network automation through orchestrated
intelligence in the open ran,” in IEEE INFOCOM 2022-IEEE Conference
on Computer Communications. IEEE, 2022, pp. 270–279.

[12] Open RAN Alliance, “O-RAN-WG1-O-RAN Architecture Description
– v04.00.00,” Tech. Spec., Mar. 2021.

https://dx.doi.org/10.21227/64s5-q431
https://dx.doi.org/10.21227/64s5-q431

7

[13] I. Gomez-Miguelez et al., “srsLTE: An open-source platform for LTE
evolution and experimentation,” in ACM WiNTECH, 2016, pp. 25–32.

[14] O-RAN Alliance, “O-RAN Near-Real-time RAN Intelligent Controller
Architecture & E2 General Aspects and Principles 2.0,” Link, O-RAN
Alliance, Technical Specification (TS), 2022.

[15] L. Zanzi et al., “LACO: A Latency-Driven Network Slicing Orchestra-
tion in Beyond-5G Networks,” IEEE Transactions on Wireless Commu-
nications, vol. 20, no. 1, pp. 667–682, 2021.

Josep Xavier Salvat received his Ph.D. from the Technical University of
Kaiserslautern in 2022 and he currently works as a senior research scientist in
the 6G Network group at NEC Laboratories Europe, Heidelberg. His research
interests lie in the application of machine learning to real-life computer
communications systems, including resource allocation and energy efficiency
problems.

Jose A. Ayala-Romero received his Ph.D. degree from the Technical Uni-
versity of Cartagena, Spain, in 2019. Currently, he is a senior researcher with
the 6G Network group at NEC Laboratories Europe. His research interests
include the application of machine learning and reinforcement learning to
solve mobile network problems.

Lanfranco Zanzi received his Ph.D. degree from the Technical University
of Kaiserslautern (Germany) in 2022. He works as a senior research scientist
at NEC Laboratories Europe. His research interests include network virtual-
ization, machine learning, blockchain, and their applicability to 5G and 6G
mobile networks in the context of network slicing.

Andres Garcia-Saavedra received his Ph.D. degree from the University
Carlos III of Madrid in 2013. Currently, he is a Principal Researcher at
NEC Laboratories Europe. His research interests lie in the application of
fundamental mathematics to real-life wireless communication systems.

Xavier Costa-Pérez (M’06–SM’18) is Head of 5G/6G R&D at NEC Labs
Europe, Scientific Director at i2Cat and Research Professor at ICREA. He
received both his M.Sc. and Ph.D. degrees in Telecommunications from the
Polytechnic University of Catalonia, Barcelona.

https://orandownloadsweb.azurewebsites.net/specifications

	Introduction
	O-RAN Architecture
	blackTestbed Design and Implementation
	blackVirtualized RAN Computing Platform
	blackService Management and Orchestrator and Mobile Core
	blackTraffic Generators and Other Applications

	blackMetrics and Data Storage
	blackComputing Metrics
	blacksrsRAN Metrics
	blackPer-flow Metrics
	blackEnergy Consumption Metrics
	blackRadio Control Policies

	Data Sets
	Computing Dataset Description
	Energy Dataset Description
	Application Dataset Description

	Novel Applications
	Conclusions
	References
	Biographies
	Josep Xavier Salvat
	Jose A. Ayala-Romero
	Lanfranco Zanzi
	Andres Garcia-Saavedra
	Xavier Costa-Pérez

