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Abstract—The Open Radio Access Network (O-RAN) architec-
ture aims to support a plethora of network services, such as beam
management and network slicing, through the use of third-party
applications called xApps. To efficiently provide network services
at the radio interface, it is thus essential that the deployment of
the xApps is carefully orchestrated. In this paper, we introduce
OREO, an O-RAN xApp orchestrator, designed to maximize the
offered services. OREO’s key idea is that services can share
xApps whenever they correspond to semantically equivalent
functions, and the xApp output is of sufficient quality to fulfill the
service requirements. By leveraging a multi-layer graph model
that captures all the system components, from services to xApps,
OREO implements an algorithmic solution that selects the best
service configuration, maximizes the number of shared xApps,
and efficiently and dynamically allocates resources to them.
Numerical results as well as experimental tests performed using
our proof-of-concept implementation, demonstrate that OREO
closely matches the optimum, obtained by solving an NP-hard
problem. Further, it outperforms the state of the art, deploying
up to 35% more services with an average of 30% fewer xApps
and a similar reduction in the resource consumption.

I. INTRODUCTION

As mobile networks continue to gain momentum, it has
become essential to accommodate a growing number of traffic
classes and demanding services [1]. The O-RAN architecture
[2], promoted by the O-RAN Alliance, addresses such a need
by building upon virtualization and openness principles [3],
[4]. A key feature of the O-RAN architecture is network au-
tomation, enabled by xApps and rApps, third-party applications
running in Radio Intelligent Controllers (RICs) and operating,
respectively, below and above the 1-second timescale. In this
context, the integration of Machine Learning (ML) plays a cru-
cial role, since ML-based xApps can serve as the foundation
of the RAN intelligence for closed-loop and agile network
control [5]. However, as the use of ML takes a substantial
toll on the system resources, it is imperative to devise novel
orchestration policies that effectively minimize the xApps
computational footprint within the O-RAN architecture. This
is especially important when resources are scarce and shared
among multiple tenants. Reducing resource utilization not only
decreases the operational expenditure of RANs, representing
40% of the total costs in cellular network [6], but it also
contributes to lower energy consumption.

Existing research gap. The design of an efficient policy for
the orchestration of RAN intelligence in O-RAN platforms
is still an open challenge. The state of the art, discussed in
details in Sec. VI, either fails to acknowledge the complexity

of the RAN intelligence management in O-RAN, or only con-
siders monolithic services and xApps with oversized resource
allocations, resulting in sub-optimal decisions. To fill this
gap, we propose a novel O-RAN intElligence Orchestration
(OREO) framework that, given the Mobile Network Operators’
(MNO) demand for network services, identifies the set of
xApps to deploy as well as their operational configuration,
while meeting the specific service requirements and keeping
resource expenditure at the minimum.

OREO distinctive features. Our study pioneers the integra-
tion of the Network Function Virtualization (NFV) paradigm
into the O-RAN architecture, recognizing that RAN services,
such as beam allocation and handover prediction, can be
built by interconnecting elementary RAN functions, like load
forecaster and traffic classificator. Importantly, our approach
facilitates the sharing of common functions across services and
efficient tuning of resources allocated to contributing xApps.
As detailed in Sec. II-A, we consider that functions with the
same semantic can be deployed as xApps at distinct complex-
ity levels, leading to different trade-offs among function output
quality, resource consumption, and execution speed.

Technical challenges. Jointly managing the orchestration
of RAN services and associated resources opens the door to
an enhanced orchestration policy. However, to grasp such an
opportunity, an O-RAN service orchestrator has to address
multiple challenges: (i) it has to identify the most convenient
service configuration, i.e., the xApps, from those available in
the catalog of the near-real-time (near-RT) RIC, that have the
right semantic to implement a service matching the desired
functional requirements; (ii) the output quality, hence the level
of complexity, of each xApp must adhere to the service quality
requirements; (iii) the computational (e.g., CPU, GPU) and
memory (e.g., RAM, disk) resources allocated to the xApps
must be sufficient for fulfilling the service latency require-
ments, while not exceeding the available resource budget.

Summary of novel contributions.
• By exploiting the NFV paradigm, we look at O-RAN

services not as monolithic, rigid entities, but rather as sets of
interconnected elementary functions that can be implemented
as O-RAN xApps with distinct levels of complexity (i.e.,
yielding different levels of output quality). This approach dra-
matically increases the flexibility in deploying RAN services.

• By developing a model that captures all relevant aspects,
we formulate the (NP-hard) xApp Deployment and Sharing
(xDeSh) problem that maximizes the MNO profit generated



by the offered services while accounting for the service and
system constraints.

• We design an intelligent orchestrator – named OREO
– and integrate it into the O-RAN architecture. In view of
the complexity of the xDeSh problem, the OREO engine
implements a heuristic solution to xDeSh that: (i) selects the
xApps providing the functions that are semantically necessary
for the service deployment, (ii) at the level of complexity that
best trades off output quality with resource expenditure. To our
knowledge, OREO is the first to leverage the NFV paradigm
for an efficient and flexible deployment of O-RAN xApps.

• We evaluate OREO through an extensive numerical anal-
ysis and experimental results obtained with our proof-of-
concept testbed, integrated in a O-RAN platform and running
real-world RAN services. OREO can support a number of
services close to the optimum, and, compared to the state of
the art, it enables the co-existence of more services (16.3%
more on average and up to 25.8%), while reducing resource
expenditure (by 28.8% less on average and up to 35%).

II. THE OREO FRAMEWORK

This section presents OREO, outlining first its purpose and
the distinctive features of its engine (Sec. II-A), and then the
rationale behind its design and its integration within the O-
RAN architecture (Sec. II-B).

A. OREO driving purpose and distinctive features

The success of next-generation mobile networks greatly
hinges upon the quality of RAN intelligence and, hence,
upon the performance of its orchestration framework, which
is responsible for deploying RAN management services [7].
Our orchestrator, OREO, acts upon a set of service requests
by the MNOs in an O-RAN platform. Given such requests,
OREO selects the xApp(s) required to deploy the services
in the near-RT RIC, and the specific xApps configuration
that lets a service meet its performance requirements while
matching the resource availability in the platform. Importantly,
despite this work focuses on xApps, the design of the OREO
framework is not limited to near-RT services and can be ex-
tended to non-RT RAN functions to optimize the instantiation
and management of rApps within the non-RT RIC. OREO’s
orchestration decisions are made by its core component, the
OREO engine, which greatly differs from state-of-the-art O-
RAN orchestrators such as the pioneering work in [8].

A key differentiating principle that drives the design of
the OREO engine consists in conceiving O-RAN services as
sets of interconnected functions rather than monolithic entities.
This approach capitalizes on the known benefits of the NFV
paradigm, such as enhanced flexibility, scalability, and cost-
effectiveness [9]. By recognizing that O-RAN services can
be built by interconnecting elementary RAN management
functions, OREO leverages xApps as fundamental building
blocks to efficiently offer such services. More specifically,

• Service composition: Each network service request fed
by an MNO to the OREO engine is associated with
a minimum service quality and a maximum latency

requirement. To meet performance targets, services can
be deployed using different configurations: each config-
uration corresponds to a different set of functions, with
each function implementing a certain task. For instance,
enabling network slicing may involve a single function
implementing a reinforcement learning (RL)-based policy
[10], or combining it with a traffic predictor to enhance
system response to traffic condition changes.

• Implementing service functions through xApps: Addition-
ally, each function can be implemented through multiple
xApps, each executing semantically the same function,
but instantiated at a different operating point, hereinafter
also referred to as complexity factor. Importantly, com-
plexity factors provide different trade-offs between the
output quality and processing latency of the function
offered by the xApp and the computational resources
necessary to run that xApp.

Thus, based on the above concepts, in OREO the quality
and latency incurred by a service depend upon:

• The specific configuration (set of functions) that is se-
lected to enable the service;

• The specific xApps (hence levels of complexity) that
are chosen to implement the functions in the selected
configuration.

The OREO engine identifies the service configuration and
the corresponding xApps in such a way that it can best suit
the service requirements. Furthermore,

• Whenever multiple services require the same function,
OREO allows such services to share the xApp that
implements the semantics of that function, if the xApp
complexity level meets the requirements of the services;

• As the service latency targets can be fulfilled by properly
setting the resources allocated to the shared xApps,
OREO scales the resources assigned to an xApp ac-
cording to the overall load imposed by the correspond-
ing services, as well as the available resource budget.
Importantly, in so doing, OREO avoids resource over-
provisioning, as opposed to relying upon a fixed amount
of resources allocated to xApps as in state-of-the-art
solutions [8].

B. OREO system architecture

The OREO framework, illustrated in Fig. 1, is designed
to be integrated into the O-RAN Service Management and
Orchestration (SMO), which is responsible for managing and
orchestrating all control and monitoring procedures of the
RAN components via the O1 interface. In particular, OREO
operates within the non-RT RIC, which supports the execution
of third-party applications known as rApps and, through the
A1 interface, enables closed-loop control of the RAN.

By accessing the Human-Machine interface (HMI), OREO
receives management intents from an MNO, which submits
requests for a set of services, specifying the maximum toler-
able delay and minimum quality for each service (Step 1).
As mentioned in the previous section, the OREO engine
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Fig. 1. OREO design and integration in the O-RAN architecture. The
workflow (dashed black line) is as follows: (i) the MNO submits service
requests via the Human-Machine interface (HMI); (ii) OREO processes such
requests and, with the support of the xApp lifecycle manager, instructs the
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Fig. 2. Graph-based representation of the system under study and relation
between its main components. For clarity, the xApp layer only includes the
xApps implementing function f1.

calculates the deployment of xApps satisfying the service
requests (Step 2). xApps are indeed third-party applications
that implement customized logic to drive the RAN efficiently
and run within the near-RT RIC, i.e., the central control
and optimization unit of the RAN operating on a sub-second
time scale. The selected xApps are deployed within the the
near-RT RIC using management services, such as the xApp
lifecycle manager provided by the SMO through the O1
interface (Step 3). Through the E2 interface and open APIs,
the near-RT RIC interacts with the RAN centralized and
distributed units (O-CUs and O-DUs, respectively), collecting
RAN performance metrics and providing control actions.

As detailed in Sec. V, we have implemented all OREO
components and integrated them in the O-RAN architecture,
leveraging an O-Cloud platform [11] that hosts the SMO,
the non-RT RIC, and the near-RT RIC. So doing, we have
developed a proof-of-concept testbed used to measure the
performance of the proposed solution in real-world settings.

III. XDESH: XAPP DEPLOYMENT AND SHARING

We now present the system model (Sec. III-A) and the xApp
Deployment and Sharing (xDeSh) problem (Sec. III-B).

A. System model

Fig. 2 depicts the system components, which we further
detail in the following; Tab. I summarizes the used notations.

• Services and service configurations. We focus on
decision-making services managed by the near-RT RIC. Each

TABLE I
NOTATIONS

Parameters
Symbol Description
s∈S RAN service

Ts (Qs) Target latency of service s under configuration cs
ps Priority of service s

cs∈Cs Service s configuration
Vcs Set of nodes of the service configuration graph cs
f∈F RAN function

χf∈Xf Complexity factor of function f
fχ xApp implementing function f with complexity χ

f
(j)
χ j-th instance of xApp fχ

µ
f
(j)
χ ,mem (disk)

Memory (disk) requirement of xApp f
(j)
χ

λ
P(f

(j)
χ )

Input data rate of f (j)
χ if shared among s∈P(f (j)

χ )

θfχ Amount of input data processed by fχ in a CPU cycle
K Set of resource types
B Vector of resource budgets of the different types

qcs,fχ Quality of xApp fχ
l
f
(j)
χ

Processing latency of the j-th instance of xApp fχ

τcs Latency of service s

Decision variables
Symbol Description
zcs Binary variable for service configuration cs selection

v
cs,f

(j)
χ

Binary variable indicating if f (j)
χ is used in configuration cs

ρ
f
(j)
χ

Resource allocation for the j-th instance of xApp fχ

service s is characterized by: (i) a target latency Ts specifying
the maximum acceptable delay to output a decision since a
service request arrives; and (ii) a target decision quality Qs,
e.g., the minimum required accuracy for a traffic classification
task. Further, a service is assigned a priority level ps, which
depends on the revenue generated for the MNO and is used to
determine which services should be dropped in case of insuf-
ficient resource availability. A service can be provided using
different configurations, cs ∈ Cs, i.e., sets of interconnected
elementary functions. Each configuration is associated with
a level of quality and resource demand, determined by the
set of functions appearing in the configuration; thus, properly
selecting cs makes it possible to trade off the performance of
a service with its deployment and running cost.

• Functions and xApps. A function f∈F represents a low-
level operation and serves as the fundamental building block
of one or more services. Examples of functions include traffic
forecasting and traffic classification. Functions may process
(i) metrics collected by the RAN elements (O-DU, O-CU,
etc.) and shared with the near-RT RIC via the E2 interface;
and/or (ii) information provided by other functions. A service
configuration can then be modeled as a directed graph whose
vertices (Vcs ) and edges represent, respectively, the functions
composing the configuration and the dependency relations
between them. Specifically, an edge exists from function f ′

to function f whenever the execution of f requires the output
of f ′. Each function can be implemented with a different
complexity factor, χf∈Xf . For instance, a traffic classification
function can be provided by different ML models, each
offering a different accuracy-resource demand trade-off.

A specific function with a given complexity factor defines



an xApp, which is thus indicated as fχ = (f, χf ). Let P(fχ)
be the set of service configurations that include xApp fχ,
and λP(fχ) be the rate at which data is fed to, and needs
to be processed by, the xApp per unit of time. We remark
that, multiple instances (i.e., replicas) of a given xApp can
be implemented and, hence, coexist in the system; we then
denote the j-th instance of fχ with f

(j)
χ .

• Near-RT RIC resources. The O-Cloud can provide
the near-RT RIC with computing and storage resources
(e.g., CPU, GPU, memory) to run xApps. We denote with
K={1, . . . , K} the set of available resource types, and with
B = [B1, . . . , BK ] the vector collecting, for each type, the
available resource budget. For simplicity and without loss of
generality, in the following we focus on CPU, memory, and
disk storage. Thus, we let ρ

f
(j)
χ

=[ρ
f
(j)
χ ,1

, . . . , ρ
f
(j)
χ ,K

], with
ρ
f
(j)
χ ,k

≤Bk denote the amount of resource of type k reserved

for the xApp instance f
(j)
χ , and the corresponding memory and

disk requirements with, respectively, µ
f
(j)
χ ,mem and µ

f
(j)
χ ,disk.

• xApp and service quality. Let qcs,fχ be the quality score
obtained by the xApp fχ associated with service configuration
cs. Common quality metrics include prediction and classifi-
cation accuracy, regression error, and expected reward. The
quality score qcs,fχ depends on the quality of the input data,
which, in turn, depends on the complexity level associated
with the function f ′ preceding f in the configuration graph.
Accordingly, the quality metric for a service s implemented
under configuration cs, denoted as qcs , is equal to the quality
of the last xApp’s output in the configuration graph.

• xApp and service latency. Given the considered resource
types, as long as memory and disk requirements (µ

f
(j)
χ ,mem and

µ
f
(j)
χ ,disk) are satisfied, only the CPU allocation has an impact

on the xApps processing latency, denoted by l
f
(j)
χ

for the j-th
instance of xApp fχ. Drawing on the existing works [12]–
[14], we can model a function, f (j)

χ , that is shared among the
service configurations in P(f

(j)
χ ), as an M/M/1 queue. We can

then write the corresponding average processing latency as:

l
f
(j)
χ

= (ρ
f
(j)
χ ,cpuθf(j)

χ
− λP(f

(j)
χ )

)−1

where ρ
f
(j)
χ ,cpu is expressed as CPU cycles per second, θ

f
(j)
χ

represents the xApp complexity and expresses the amount of
input data processed by the xApp in a CPU cycle, and λP(f

(j)
χ )

specifies the xApp load when shared among P(f
(j)
χ ) service

configurations. Also, let τcs be the latency of service s when
implemented with configuration cs. Defining a path πcs on
the graph of configuration cs as a set of edges connecting an
input function with an output function in cs, τcs is the latency
associated with the most time-consuming path in the graph.
The latency for collecting data is indeed deemed negligible as
the near-RT RIC periodically exposes data to the xApps. The
path latency depends on the complexity factor and resource
allocation of each of the functions composing the path,

τcs = argmax
{πcs}

∑
f∈πcs

lfj,χfj
. (1)

B. xDeSh problem formulation

Given the above model, we now introduce the xDeSh
optimization problem, along with some additional system
variables and parameters defining the current state of the
system. Further, we prove that the xDeSh problem is NP-hard.

• Service configuration selection. Let S be the set includ-
ing both the existing, and still to be kept, services and the
new services to be deployed. For each service s∈S, the OREO
orchestrator identifies the most suitable configuration cs to be
used. We denote with zcs the binary decision variable taking
1 if configuration cs is selected for service s. Notice that:
(i) it may happen that none of the possible configurations of
a service s can be deployed, due to insufficient resources to
guarantee the minimum required service performance; (ii) at
most one configuration per service can be selected. That is,
the following constraint must hold:∑

cs∈Cs

zcs ≤ 1, ∀s ∈ S . (2)

• Selection of xApps to implement and share. Whenever
an xApp fχ is required by more than one service, the or-
chestrator has to determine whether to let such services share
the same instance f

(j)
χ , or to implement multiple instances

thereof. We thus introduce the binary decision variable v
cs,f

(j)
χ

,

to indicate whether f (j)
χ is used by service configuration cs or

not. Clearly, all the functions required by a selected service
configuration must be implemented. Moreover, neglecting the
possibility of scaling out xApps, a service configuration cannot
use more than one instance of a given xApp. The above
requirements translate in the following constraint:∑

χ∈Xf

∑
j

v
cs,f

(j)
χ

= zcs , ∀s∈S,∀cs∈Cs,∀f∈Vcs . (3)

Similarly, an xApp implementing function f cannot be asso-
ciated with a service configuration that does not include f :∑

χ∈Xf

∑
j

v
cs,f

(j)
χ

= 0, ∀s∈S, cs∈Cs, f /∈Vcs . (4)

Ultimately, the orchestrator allocates memory and disk
resources for deploying the necessary xApps, while adhering
to the following constraint:

ρ
f
(j)
χ ,k

≥µ
f
(j)
χ ,k

1[∃cs∈Cs|v
cs,f

(j)
χ

=1], ∀k∈{disk, mem} (5)

where the indicator function 1 equals one when the subscripted
condition holds, indicating that xApp f

(j)
χ must be deployed.

• Meeting service requirements. OREO has to select a
service configuration (i.e., the functions that implement the
service) and the corresponding resources in such a way that
the quality and latency targets are satisfied. That is, for any
s∈S and cs∈Cs,

qcs ≥ Qszcs (6)
τcszcs≤Ts . (7)



• Complying with the resource budget. We also need con-
ventional capacity constraints, i.e., the near-RT RIC resource
budget B must not be exceeded:∑

f∈F

∑
χ∈X

∑
j

ρ
f
(j)
χ ,k

≤ Bk, ∀k∈K . (8)

• Near-RT RIC’s settings. Let Ŝ = {ŝ} denote the set of
services that are already deployed, and cŝ capture their service
configuration. Accordingly, the binary parameter ẑcŝ takes 1 if
configuration cŝ of service ŝ is implemented, and 0 otherwise.
Now, given an xApp instance f

(j)
χ , we let v̂

cŝ,f
(j)
χ

indicate

whether service configuration cŝ is using f
(j)
χ , and ρ̂

f
(j)
χ

denote
the vector indicating its current resource allocation.

• No service disruption. It is critical to account for the
cost incurred by the system whenever OREO determines a
new configuration for an existing service s. Indeed, due to the
need to ensure continuity for a service s∈Ŝ∩S, both the xApps
required by {cŝ | ẑcŝ}ŝ∈Ŝ∩S and by {cs | zcs}s∈Ŝ∩S have to co-
exist before (i) turning off the relative currently implemented,
but no longer required, xApps, and (ii) instantiating the
remaining functions required by the residual services in S. We
then define F1 as the set of xApps required by the existing
services that should not be deactivated:

F1 = {f (j)
χ |

∑
cŝ∈Cŝ

v̂
cŝ,f

(j)
χ

= 1}f∈F, χf∈Xf , j, ŝ∈Ŝ∩S .

Similarly, we define F2 as the set of xApps required in the last
defined near-RT RIC’s setting for the services whose operation
must not be disrupted. Then, we must have:∑

f
(j)
χ ∈F1\F2

ρ̂
f
(j)
χ ,k

+
∑

f
(j)
χ ∈F2

ρ
f
(j)
χ ,k

≤Bk, ∀k∈K (9)

where F1\F2={f (j)
χ | f (j)

χ ∈F1∧f (j)
χ /∈F2}.

• Objective function. The xDeSh problem defines an xApp
selection and resource allocation policy that (i) maximizes the
number of offered services based on their priority levels, and
(ii) minimizes the near-RT RIC resource consumption, i.e.,

Ψ(z,v,ρ)=
∑
s∈S

∑
cs∈Cs

zcs ps−
1

K

∑
f∈F

∑
χ∈Xf

∑
j

∑
k≤K

ρ
f
(j)
χ ,k

Bk

where the decision variables (see Tab. I) have been vectorized,
and the 1/K factor prevents service rejection for the sake of
resource savings. The xDeSh problem can then be formulated
as:

xApp Deployment and Sharing (xDeSh) Problem
max
z,v,ρ

Ψ(z,v,ρ)

s.t. (2), (3), (4), (5),(6), (7), (8), (9)

zcs ∈ {0, 1} ∀s ∈ S, cs ∈ Cs
v
cs,f

(j)
χf

∈ {0, 1} ∀cs ∈ Cs, f ∈ F , χf ∈ Xf , j

ρ
f
(j)
χ ,k

∈ [0, Bk] ∀k ∈ K, f ∈ F , χf ∈ Xf , j
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Fig. 3. The xDeSh problem is solved with an iterative algorithm that alternates
the Lagrangian relaxation and the subgradient method until the set stopping
criterion is met.

Proposition 1. The xDeSh problem is NP-hard.

Proof. The full proof is omitted for brevity. The thesis in
proved by showing that any instance of the well-known NP-
hard multi-commodity facility location problem (FLP) can be
reduced to an instance of the xDeSh problem. As the reduction
can be obtained in polynomial time, the thesis follows. ■

IV. SOLVING THE XDESH PROBLEM

Motivated by Proposition 1 above, we propose an efficient
heuristic solution, which is outlined in Sec. IV-A. Then,
we describe in detail each of its building blocks, namely, a
Lagrangian relaxation and a decoupling method (Sec. IV-B),
a feasibility testing algorithm (Sec. IV-C), and, finally, a
subgradient method (Sec. IV-D). We remark that our solution
algorithm resides in the OREO engine, introduced in Sec. II.

A. Overview of the algorithmic solution

In the proof of Prop. 1, we underlined the similarity between
the xDeSh problem and the FLP. Then, inspired by existing
efficient FLP solvers [15]–[17], we design our algorithmic
solution adopting an iterative, two-stage approach. As illus-
trated in Fig. 3, our solution framework first leverages the
Lagrangian Relaxation (LR) method, a relaxation technique
that incorporates the effect of the constraints that entail the
problem’s complexity into the objective function. To enforce
these constraints, the method introduces penalty terms, known
as Lagrange multipliers. However, this approach may provide
a solution to the xDeSh problem that is not feasible.

To solve this issue, we combine the LR method with an
algorithm capable of identifying the violated constraints and
making adjustments to the relaxed solution. Importantly, the
feasible and infeasible solutions that we get represent the lower
and upper bounds on the optimal solution, respectively. To
obtain increasingly tighter bounds, we leverage the subgradi-
ent method – a robust technique that provides a policy for
progressively updating the Lagrangian multipliers.

The above solution process is repeated until one of the
three stopping criteria is met. The first criterion terminates
the process when the LR and the obtained solutions differ
by less than a given threshold, ∆. Subsequently, the iterative
process is stopped if the step size, determining the size of
updates to the Lagrangian multipliers through the subgradient
method, drops below a designated threshold Γ. Indeed, the step



size is initially set to large values to facilitate rapid updates
and then halved when the iterative process fails to improve
the solution for N iterations, aiming to refine and stabilize
the overall process. The third stopping criterion finally sets a
predefined maximum number of overall iterations, Λ.

B. Problem relaxation and decoupling

To apply the LR to the xDeSh problem, we note that
constraints (3), (6), and (7) entangle the service configuration
and the xApp selection subproblems. However, since the LR
deals with inequalities, we split constraint (3) into:∑

χ∈Xf

∑
j

v
cs,f

(j)
χ

≥zcs , ∀s∈S, cs∈Cs, f∈Vcs (10)

∑
χ∈Xf

∑
j

v
cs,f

(j)
χ

≤1, ∀s∈S, cs∈Cs, f∈Vcs . (11)

The two inequalities above indeed provide, respectively, a
lower and an upper bound on the number of xApps imple-
menting the same function for a given service configuration
cs, and they collapse into (3) for the selected configuration.
Moreover, we linearize (7), which links the configuration
selection with the relative expected latency by adopting the
big-M linearization for each service s implemented according
to configuration cs:

τcs−Ts≤M(1−zcs) . (12)

We relax constraints (10), (6) and (12) by introduc-
ing, respectively, the non-negative Lagrangian penalty terms
β={βcs,f}s,cs,f , γ={γcs}s,cs , and δ={δcs}s,cs , which leads
to the below LR formulation.

XDESH LAGRANGIAN RELAXATION PROBLEM (LR):

max
z,v,ρ

ΨL(z,v,ρ,β,γ, δ)

s.t. (2), (4), (5),(8), (9), (11)

with the Lagrangian function ΨL defined as:

ΨL(z,v,ρ,β,γ, δ)=ΨL,1+ΨL,2

ΨL,1(z,β,γ, δ)=
∑

cs
zcs(ps−γcsQs−Mδcs−∑

f∈cs
βcs,f )+

∑
cs
δcs(M+Ts)

ΨL,2(v,ρ,β,γ, δ)=
∑

s,cs
[γcsqcs−δcsτcs+∑

f∈cs,χ,j
βcs,fvcs,f(j)

χ
]− 1

K

∑
f,χ,j,k

ρ
f
(j)
χ ,k

Bk
.

Conveniently, the xDeSh LR problem defined above can be
easily decomposed by applying primal decomposition. LR is
indeed separable into two independent subproblems, dealing,
respectively, with (i) the service configuration selection (LR1)
and (ii) the xApp instantiation and resource reservation (LR2):

LR1 PROBLEM: maxz ΨL,1(z,β,γ, δ)

s.t. (2)

LR2 PROBLEM: maxv,ρ ΨL,2(v,ρ,β,γ, δ)

s.t. (4), (5),(8), (9), (11) .

LR1 and LR2 are convex and therefore can be solved
efficiently using standard solvers. Moreover, as LR1 and LR2

Algorithm 1 Ensuring feasibility
Input: {z̄, v̄, ρ̄} ▷ Relaxed solution.
Output: {ẑ, v̂, ρ̂} ▷ Feasible solution.
ẑ ← z̄ ▷ Accept relaxed service configuration choice.
if Eq. (10) is not respected for any service s ∈ S then

v̂
cs,f

(j)
χ
← xAppSelection algorithm ▷ Fix the relaxed xApp

selection.
if Eq. (6) is not respected for any service s ∈ S then

v̂
cs,f

(j)
χ
← ServiceQualityAdjustment ▷ Increase the service

quality by adjusting functions complexity.
if Eq. (12) is not respected for any service s ∈ S then

ρ̂
f
(j)
χ ,cpu

← ServiceLatencyAdjustment ▷ Reduce the service

latency by adjusting xApp CPU allocation.
while Eq. (8) or (9) are not respected do

s̃← the lowest-priority implemented service with the highest deployment
cost
ẑcs̃ ← 0 ▷ Deactivate service s̃

are completely independent and separable, they can be solved
concurrently. The LR solution, also referred to as the relaxed
solution, is obtained by combining the solutions of LR1 and
LR2. We can then prove the following proposition:

Proposition 2. The solution of the LR1 and LR2 problems
provides a solution to the xDeSh Lagrangian Relaxation
problem with an approximation ratio of 3.

Proof. LR1 is a knapsack problem with the constraint that
each service can have only one active configuration at a time.
LR2, instead, is a variant of the single-layer multi-commodity
FLP, as xApps correspond to facilities, service configurations
to customers, and services to commodities, with the additional
objective of allocating resources to xApps to maximize the
quality and minimize the services latency. Heuristics with
known approximation ratio exist for the knapsack ((1−ϵ) if
the items size is within ϵ of the knapsack capacity [18]) and
the uncapacitated FLP (3 using Primal-Dual methods [19]).
Consequently, considering that (i) the relaxed solution is
obtained by combining the LR1 and LR2 solutions, (ii) there
is only 1 possible configuration per service (i.e., ϵ = 1 in the
knapsack), and (iii) overlooking the xApp resource allocation
problem, the thesis holds. ■

C. Ensuring feasibility

As mentioned, the solution of the LR1 and LR2 problems
provide a solution to the xDeSh Lagrangian Relaxation prob-
lem, which however may be unfeasible. We thus propose a
multi-stage algorithm to derive a feasible solution at a later
step. As depicted in Fig. 3, this algorithm receives the relaxed
solution, and then identifies and properly rectifies any violation
of the relaxed constraints (6), (10), and (12). The stages of this
approach are reported in Alg. 1 and detailed below.

1) Ensuring a compliant xApp selection. The first stage
assesses the compliance with constraint (6) for each chosen
service configuration. This involves verifying if the xApps
selected by the relaxed solution can meet the configuration
functional requirements. If this condition is not met, the
missing xApps need to be added to the initial solution. Then
it is checked which xApps included in the solution are already
deployed, and, hence, could be shared. Sharing is applied only



if the increase in resource consumption due to the consequent
additional load would be smaller than the amount of resources
needed to create a new instance of the xApp.

2) Meeting service quality requirements. Once the xApps
offering the functions of each selected service configuration
have been identified, we have to ensure that the service quality
target is satisfied. If any service fails to meet this criterion, our
strategy adopts the service configuration selection offered by
the relaxed solution while enhancing the complexity (output
quality) of the deployed functions.

The method ServiceQualityAdjustment (pseudocode omitted
for brevity) accomplishes this task by identifying the xApp
that, when selected with increased complexity, contributes the
most to the provided service quality at the minimum resource
cost, i.e., it has the highest quality efficiency. Furthermore,
after ensuring sufficient quality for all services, it is evaluated
whether it is possible to reduce the complexity of any function
to decrease resource demand without violating the quality
constraints of any service. If in so doing, the quality constraints
of all services are still met, then the complexity reduction is
considered appropriate.

3) Meeting service latency targets. A similar approach is
undertaken for service latency. Specifically, a method Service-
LatencyAdjustment (pseudocode omitted for brevity) increases
the CPU allocation for each xApp contributing to a service that
fails to meet its latency target. CPU allocation is increased first
for the xApps for which the smallest CPU increase makes their
latency equal to the target value.

4) Meeting the resource budget. The previous stages
identify the xApps needed for the deployment of the requested
services and adjust the compute resource allocation accord-
ingly. However, the constraints (8)–(9) have to be fulfilled as
well, i.e., it is imperative to verify the feasibility of the current
solution and drop service requests as needed. The services to
be discarded (if any) are those with the lowest priority and the
highest deployment cost. This iterative procedure is repeated
until the available budget is met by all resource types.

D. The subgradient method
To penalize the violations of the relaxed constraints, the

values of the Lagrangian multipliers can be determined so
that the extent of such violations is minimized. The sub-
gradient method is a viable and computationally efficient
approach to solving this [20]. The subgradient method is an
iterative optimization algorithm that generalizes the gradient
descent algorithm for non-differentiable functions. It involves
iteratively updating the Lagrange multipliers in the direction
of the subgradients of the LR problem objective function
with respect to the Lagrange multipliers. Importantly, the
subgradient method is effective with non-smooth and non-
convex functions [20], as is the case of the xDeSh problem.

V. PERFORMANCE EVALUATION

We first evaluate OREO through extensive simulations
(Sec. V-A), then we run experimental tests using a proof-of-
concept implementation of the OREO framework supporting
real-world RAN services and xApps (Sec. V-B).

TABLE II
TESTING SCENARIOS

Scenario Ns |F| Xf

Small (S) 8 8 2
Medium (M) 8 8 3

Large (L) 10 8 3
Extra Large (XL) 12 10 3
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Fig. 4. Numerical results: Percentage of services (top) and xApps (bottom)
deployed by Optimal, OREO, and OrchestRAN.

A. Numerical analysis

To test the effectiveness of OREO at scale, we developed
a Python simulator. In the considered scenario, an MNO
generates requests for a set of Ns services. The MNO requests
are forwarded to the non-RT RIC, where the OREO selects the
most amenable configuration among 3 possible ones. Each
configuration involves at most 4 RAN functions among the
|F| available, with each function featuring Xf different levels
of complexity. We consider 4 scenarios of different scales as
illustrated in Tab. II and present average results over 100 runs.

Benchmarks. We compare OREO against two alternative
policies: the “Optimal” policy, which uses Gurobi to optimally
solve the xDeSh problem, and OrchestRAN [8], a state-of-
the-art O-RAN orchestrator. For fairness, since OrchestRAN
does not consider services as compositions of interconnected
xApps, we let it handle every possible combination of (i) each
configuration of a service requested by the MNO and (ii)
every available complexity factor for the involved functions,
as distinct xApps.

Approximation ratio estimate and run times. Tab. III
reports the numerical estimates of the approximation ratio α
(i.e., the ratio of the heuristic performance to the optimum) and
the execution times for the implemented orchestration policies.

TABLE III
EMPIRICAL APPROXIMATION RATIO AND RUN TIMES

OREO OrchestRAN Opt.

α 0.9α ᾱ t S α 0.9α ᾱ t

S 0.77 0.86 0.88 3.44 15.75 0.23 0.35 0.38 54.18
M 0.81 0.86 0.89 4.51 41.33 0.16 0.34 0.37 186.40
L − − − 6.33 − − − − −

XL − − − 10.31 − − − − −
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Fig. 5. Numerical results: CPU (left), RAM (center), and Disk (right) resources used by Optimal, OREO, and OrchestRAN.
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Fig. 6. Normalized latency performance of RAN services offered by Optimal,
OREO, and OrchestRAN.

Specifically, the table presents the 90% confidence interval
lower-bound (0.9α) and the average value ᾱ, for both OREO
and OrchestRAN. Note that, for the two largest scenarios (i.e.,
L and XL), where the number of optimization variables is over
104, we were unable to compute such metrics, as computing
the optimum becomes impractical.

OREO consistently provides solutions that are within 0.75
from the optimum across all tested scenarios. With 90% confi-
dence, the estimated ratio increases to 0.86; also, the relatively
narrow confidence interval suggests that OREO’s performance
consistently remains close to the average values. In contrast,
OrchestRAN’s performance gap widens with scenario size, and
even in the simplest scenario (S), it achieves an approximation
ratio that is 70% worse than that of OREO.

Regarding execution times, OREO is highly efficient with
averages below 10 seconds, even for large-scale scenarios,
proving to be up to 40 times faster than the optimum.

Deployed services and xApps. Examining the percentage
of services provided by OREO and its counterparts (Fig. 4
(top)), the Optimal provides approximately 95% deployed
services within the two smallest scenarios (i.e., S and M). This
implies that the tested scenarios are demanding w.r.t. the near-
RT RIC capabilities. OREO achieves performance comparable
(within 8%) to the optimum. On the contrary, OrchestRAN
results in a significant decrease in the service implementation
rate, as it yields 19% fewer services compared to the optimum.
The underlying reasons can be found in Fig. 4 (bottom), which
illustrates the average number of xApps deployed by OREO
and its alternatives in the considered scenarios. Although
OREO deploys more services than OrchestRAN, it implements
fewer xApps, thanks to its superior ability to share xApps and
adjust the resources allocated to them. In particular, OREO
instantiates 30.7% and 20.7% fewer xApps than, respectively,
OrchestRAN and the optimum, which however can better use
the xApps it deploys to ultimately offer more services.

Near-RT RIC resource consumption. The higher ability
to share xApps exhibited by OREO in comparison to its
benchmark is confirmed by its lower resource utilization at the

near-RT RIC. While OrchestRAN employs almost the whole
CPU budget under all scenarios (Fig. 5 (left)) and takes a
significant toll also on RAM (Fig. 5 (center)) and Disk (Fig. 5
(right)), OREO yields substantial resource savings (31.1% of
CPU). Notice that also Optimal uses a significant amount of
resources, as minimizing resource consumption is not the only
objective of the xDeSh problem. Accordingly, relatively to
OREO, it makes up for the larger resource consumption with
a higher number of deployed services.

Meeting service requirements. OREO properly scales the
resources allocated to the xApps according to the aggregated
load of the services sharing the xApp, so that it can suc-
cessfully fulfill the service requirements. Focusing on service
latency for brevity, Fig. 6 shows the normalized service latency
(i.e., the ratio of actual to target service latency) over the
test scenarios. Both OREO and its counterparts can meet the
target service latency in all cases, as their average normalized
service latency always remains below 1. The Optimal and
OREO policies indeed align xApps processing latency with
the service having the most stringent requirements among
those sharing the xApp. Conversely, OrchestRAN overlooks
the scaling issue related to computing resources, resulting in
sub-optimal decisions. Moreover, looking at Fig. 6 and Fig. 5
together, it is evident that OREO, similarly to the Optimal
policy, fulfills service requirements while saving substantial
resources with respect to OrchestRAN.

B. Testbed setup and results

Our testbed integrates the OREO architecture (Fig. 1) with
an emulated softwarized cellular base station. Our experimen-
tal platform includes an O-Cloud environment where xApps
can be instantiated as docker containers.

In our experiments, an MNO module generates a service
request every 100 s. Each request involves from 1 to 3 ser-
vices, chosen with equal probability among those listed below,
and with a randomly-selected target latency-quality pair. The
possible latency targets for all services are 0.1, 0.2, and 0.5 s;
the service quality targets, instead, are service-specific.

• Traffic forecasting: it predicts user traffic loads, as required
by many proactive RAN controllers. It consists of a single
configuration with a traffic forecaster xApp f1 that uses a Long
Short-Term Memory (LSTM) model. The xApp supports 3
complexity levels, corresponding to different numbers of input
samples (6 to 30) and LSTM layers (1 to 4), and different
sizes of the LSTM hidden layers (1 to 5). The possible service
quality targets are 0.9, 0.925, or 0.95.

• Traffic classification: it identifies the applications generat-
ing monitored traffic flows, e.g., so that application-dedicated
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Fig. 7. Testbed results: normalized service latency (left) and quality (center), and CPU consumption (right) of OREO, Optimal and OrchestRAN.

policies can be applied. The service includes a single configu-
ration with a traffic classificator xApp f2 that uses a Random
Forest classifier to label traffic samples. The xApp supports
3 complexity levels, depending on the number of applications
that can generate traffic flows (3 to 20). The service can be
requested with target quality values equal to 0.7, 0.8, or 0.9.

• Network slicing: it optimizes the allocation of radio re-
sources to network slices (eMBB, uRLLC, or mMTC). The
service can be implemented with 4 different configurations:
f1+f2→f3; f1→f3; f2→f3; f3, where f3 is the RL-based
slicing policy introduced in [10]. The service can be requested
with a target quality value of 0.6, 0.8, or 0.9.

Once received, the non-RT RIC processes the service re-
quests and uses OREO (or one of the benchmarks) to decide
the set of xApps and their resource allocation that best provide
the service. Then, the xApp lifecycle manager in the non-RT
RIC instructs the instantiation of the xApps in the near-RT
RIC accordingly. Each service has a 100-s lifetime and the
traffic scenario is determined using the dataset in [10], which
refers to a base station serving 6 users, evenly split into eMBB,
URLLC, and mMTC-like traffic patterns.

Results. Fig. 7 presents the average value and the 90%
confidence interval of the normalized (i.e., the ratio of actual
to target) service latency (left), service quality (center), and
CPU consumption (right). Different than some of the scenarios
presented in the previous subsection, the reduced scale of the
scenario considered here allows both OREO and its bench-
marks to meet all the service requirements. However, OREO
selects better service configurations, similar to the Optimal
policy, which renders a reduced utilization of CPU resources
when compared to OrchestRAN. In fact, OrchestRAN strug-
gles to find the right balance between service requirements
and resource utilization. Specifically, although OrchestRAN
provides lower service latency and higher service quality, it
uses 60% and 100% higher CPU consumption than OREO
and Optimal, respectively. The savings attained by OREO,
only consuming 24.9% more CPU resources than Optimal,
are achieved by pushing the latency (23%) and quality (5%)
requirements closer to their target than OrchestRAN.

VI. RELATED WORK

Recently, considerable attention has been paid to the design
of near-RT RIC xApps [21], aiming at optimally controlling O-
RAN networks. Relevant examples are xApps for network traf-
fic classification [22], [23] and network load forecasting [24],
[25]. Further, an xApp can lay down policies to define RAN
slices, as done in [10], [26], [27], or to manage the RAN radio
resources [28], [29].

In this context, proficiently managing and orchestrating
the RAN becomes even more crucial, necessitating the best
exploitation of the multitude of multi-vendor solutions [30].
Despite the large body of work existing on RAN orches-
tration [31], few studies have tackled network intelligence
management in O-RAN. Among these, [32] proposes a com-
putationally efficient orchestrator for energy consumption op-
timization in virtual RANs. The study in [33] introduces,
instead, a distributed dynamic policy for instantiating inference
models, providing performance guarantees.

The closest work to ours is OrchestRAN [8], a pioneering
O-RAN orchestrator that identifies the optimal set of xApps
to deploy and their location to offer the services requested
by network operators while meeting the performance targets.
It assumes the RAN services to be monolithic, i.e., solely
provided by an xApp, thus limiting the possibility of sharing
low-level operations between services. Thus, [8], unlike our
work, disregards the issue of RAN resources consumption –
a major contribution to MNOs’ OPEX [32].

VII. CONCLUSIONS

We proposed OREO, an O-RAN orchestrator for xApp-
based network services. Unlike previous works, OREO con-
siders that services can be deployed through different sets of
shareable elementary functions, with each function possibly
yielding an output of different quality and implemented as
an xApp. To limit resource consumption while fulfilling the
service requirements, OREO properly tunes xApps at different
complexity factors, which correspond to different quality-
latency-resource demand tradeoffs. Numerical results show
that OREO performs close to the optimum, and, compared to
the state of the art, it allocates more (16.2% on average and
35% in the largest scenario) services and consumes less CPU
(25.6% on average and over 31% in small-medium scenarios),
while meeting the service requirements. Experimental results
obtained through our proof-of-concept testbed confirm the
good performance of OREO and its ability to efficiently deploy
xApps, yielding a 37.5% reduction on CPU consumption with
respect to the state of the art.
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